На главную

Статья по теме: Достижения состояния

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

После достижения состояния равновесия реакцию этерификации доводят до завершения при температуре 275—280 °С и давлении 0,27—0,3 МПа ' >'—3,0 ат) с отводом паров воды. В результате получают этерификат с температурой плавления выше 190 °С и с динамической вязкостью около УА Па-с (4 П). После поликонденсации под вакуумом полимер имеет очень[3, С.169]

На время достижения состояния равновесия в растворах полимеров (т. е, на время релаксации) значительно влияют примеси электролитов, например минеральные соли, которые часто содержатся в полимерах. Соли в водных растворах диссоциируют, и образующиеся ионы притягивают полярные группы цепей полимеров, создавая между цепями мостичные межмолекулярные связи. Наличие таких связей приводит к увеличению времени релаксации, затрудняет перемещение цепей и замедляет установление равновесия. Если эти связи не очень прочны, полимер растворяется; ино!да они настолько прочны, что препятствуют неограниченному растворению полимера. Поэтому полимеры, содержащие минеральные примеси, следует тщательно очищать. Для этого используют диализ и элекгродиалнз.[2, С.332]

На время достижения состояния равновесия в растворах полимеров (т. е. на время релаксации) значительно влияют примеси электролитов, например минеральные соли, которые часто содержатся п полимерах. Соли в водных растворах диссоциируют, и образующиеся ионы притягивают полярные группы цепей полимеров, создавая между цепями мостичные межмолекулярные связи. Наличие таких связей приводит к увеличению времени релаксации, затрудняет перемещение цепей и замедляет установление рагшо-весия. Если эти связи не очень прочны, полимер растворяется; ино1да они настолько прочны, что препятствуют неограниченному растворению полимера. Поэтому полимеры, содержащие минеральные примеси, следует тщательно очищать. Для этого используют диализ и элекгродиалнз.[4, С.332]

В разных системах время достижения состояния равновесия различно. Например, скорости релаксационных процессов в жидкостях зависят, подобно вязкости жидкостей, от соотношения энергией межмолекулярного взаимодействия и теплового движения Чем выше вязкость жидкости, тем медленнее протекают релаксационные процессы, т. е. тем больше времена релаксации. При комнатной температуре время релаксации обычных низкомолекулярных жидкостей мало и составляет Ю-8— Ю-10 с. Однако при понижении температуры скорость молекулярных перегруппировок быстро уменьшается и при отсутствии кристаллизации жидкости при дальнейшем охлаждении превращаются в стеклообразные тела обладающие бесконечно большим временем релаксации. '[1, С.148]

В настоящем разделе будут описаны особенности достижения состояния текучести для некоторых полимеров, а объяснению происходящих при этом молекулярных процессов будет посвящен следующий раздел.[6, С.279]

Выше уже демонстрировалась применимость критерия Кулона для описания условий достижения состояния текучести полимеров (см. раздел 11.4.1). Известны также прямые подтверждения существенного влияния гидростатического давления на предел текучести полимеров. Так, Айнбиндер с соавторами [34] исследовали поведение полиметилметакрилата, полистирола, капрона, полиэтилена и некоторых других полимеров в условиях растяжения под действием наложенного гидростатического давления. Во всех изученных ими случаях модуль упругости и предел текучести возрастали с повышением гидростатического давления, причем этот эффект был выражен более резко для аморфных полимеров, чем для кристаллических*. Значительное повышение пластичности под действием гидростатического давления было обнаружено также при исследовании механических свойств полипропилена [35].[6, С.290]

Особенно наглядным становится использование введенной функции, если предположить, что поверхность упругого потенциала в пространстве напряжений обладает той же формой, что и поверхность, характеризующая условия достижения состояния текучести. Тогда очевидно, что смысл принципа Сен-Венана состоит в предположении о том, что приращения пластических деформаций происходят в направлениях, нормальных к поверхности, определяющей предельное состояние текучести. Иногда последнее положение называют условием «нормальности» развития идеальных пластических деформаций, и ряд авторов (например, Друкер [12]) обосновывают справедливость этого условия, исходя из критерия максимальной совершаемой работы.1[6, С.266]

Обратимое изменение свойств полимером под влиянием деформирования обычно характеризуется термином тиксотропия. Ути изменения могут протекать с различной скоростью. Иногда требуется значительная продолжительность деформирования, особенно «отдыха», для достижения состояния равновесия. Утл часто осложняет правильную оценку свойств полимеров. Изучение тиксотрошшх явлений в полимерах, находящихся в В. с., пока находится в начальной стадии, и полученные результаты ограничиваются отдельными качественными наблюдениями.[7, С.294]

Обратимое изменение свойств полимеров под влиянием деформирования обычно характеризуется термином тиксотропия. Эти изменения могут протекать с различной скоростью. Иногда требуется значительная продолжительность деформирования, особенно «отдыха», для достижения состояния равновесия. Это часю осложняет правильную оценку свойств полимеров. Изучение тиксотрогшых явлений в полимерах, находящихся в В. с., пока находится в начальной стадии, и полученные результаты ограничиваются отдельными качественными наблюдениями.[9, С.291]

Критерий Хилла обладает следующими особенностями: он сводится к критерию Мизеса при переходе к изотропному материалу; он не предсказывает эффекта Баушингера, поскольку содержит только четные степени компонент напряжений; он не предсказывает какого-либо влияния гидростатического давления на условия достижения состояния текучести, так как содержит только разности нормальных компонент тензора напряжений.[6, С.264]

Область, в которой наблюдается падение нагрузки вследствие перехода через предел текучести, ограничена с одной стороны температурой хрупкости, ниже которой полимер разрушается без заметных деформаций (см. раздел 12.1), и с другой стороны — температурой стеклования. Необходимо рассмотреть, каким образом температура и 'скорость деформации влияют на условия достижения состояния пластичности внутри указанной области. Возрастание скорости деформации приводит к увеличению предела текучести, существенно не сказываясь на напряжении, при котором происходит хрупкий разрыв материала. Поэтому повышение скорости деформации приводит к смещению температуры хрупкости в сторону более высоких значений и тем самым к сужению снизу области температур, в которой возможны пластические деформации (см. раздел 12.1). Изменение верхней границы области пластического состояния в зависимости от скорости деформаций исследовали Эндрюс с соавторами [38]. Их результаты будут обсуждены ниже.[6, С.291]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
2. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
3. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
4. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
5. Льюис У.N. Химия коллоидных и аморфных веществ, 1948, 536 с.
6. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
7. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
8. Бажант В.N. Силивоны, 1950, 710 с.
9. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную