На главную

Статья по теме: Физическим состоянием

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Как было отмечено ранее, различный вид кривых напряжение—деформация связан не с определенным химическим строением полимеров, а с их физическим состоянием. При соответствующем выборе внешних условий нагружения можно наблюдать переход от одного типа поведения (например, хрупкое, кривая /) к другому (пластичное, кривая 3). Эти феноменологические особенности процесса деформирования полимеров детально рассмотрены в работах [14, 52—53, 55—57] и в работах, на которые сделаны ссылки в гл. 1 !). Уменьшение[2, С.37]

Свойства двух- и многофазных полимерных смесей определяются не только их составом, но и способом изготовления, режимом переработки, физическим состоянием полимеров в момент смешения. Наивысшая степень диспергирования одних по-тичеров в других достигается при их смешении в виде латсксов, дисперсий с последующей коагуляцией или при смешении расплавов одинаковой вязкости. В случае аморфных полимеров степень дисперсности тем больше, чем ближе химическое строение и ниже молекулярная масса смешиваемых полимеров. Вследствие гшантских размеров макромолекул и надмолеку-[4, С.424]

Исходя из общих представлений о механических свойствах полимеров, можно .предположить, что возможность их механокрекин-га определяется при прочих равных условиях в первую очередь физическим состоянием полимера. Механокрекинг полимера, находящегося в вязкотекучем состоянии, строго говоря, не должен происходить, что следует из самого определения вязкотекучего состояния как возможности взаимоперемещения цепей в целом. Если же он наблюдается на практике, то это можно объяснить либо по-лидисперсностью полимера и наличием определенного количества цепей, длина которых превышает величину, характерную для перехода в текучее состояние при данной температуре, либо скоростью деформации, при которой при данной температуре начинает проявляться высокая эластичность, связанная именно с высокой скоростью деформации. Другими словами, механокрекинг начинается тогда, когда практически кончается текучесть.[9, С.54]

Такой характер разрушения наблюдается для полимеров хрупких в стандартных условиях испытаний. Сама по себе хрупкость может быть следствием либо молекулярной структуры полимера (густосетчатые), либо определена физическим состоянием полимерного материала при температуре испытания. Подробнее вопрос влияния температуры на деформационно-прочностные свойства пластмасс будет рассмотрен ниже.[10, С.89]

Физическое строение полимера существенно влияет на характер его теплового расширения [17]. При нагревании аморфных полимеров (рис. 49, а) объем материала увеличивается пропорционально температуре, однако скорость этого процесса определяется физическим состоянием объекта. По достижении определенной температуры тепловое расширение возрастает. На графической зависимости V- ф(Г) наблюдается перелом. Соответственно, в точке перелома происходит скачкообразное увеличение значения коэффициента теплового расширения. Температура, при которой наблюдается это явление, называется температурой структурного стеклования (Тсс). Как правило, Гсс > Гс.[10, С.133]

У полимеров в отличие от низкомолекулярных соединений как отдельный вид состояния вещества рассматривают релаксационные (физические) состояния. У низкомолекулярных соединений границы физических состояний совпадают с границами агрегатных состояний. Под физическим состоянием полимера понимают состояние, равновесное для данной температуры. Физические состояния определяются особенностями подвижности атомов, групп атомов, звеньев, сегментов, макромолекул и элементов надмолекулярной структуры при данной температуре. Переходы из одного равновесного состояния в другое являются релаксационными процессами, т. е. при изменении температуры данное равновесное состояние полимера уже становится неравновесным, а переход из неравновесного состояния в новое равновесное в результате тепловых движений происходит во времени. Это время характеризует скорость релаксационного процесса. У низкомолекулярных соединений оно очень мало и им пренебрегают. У полимеров время релаксации может быть очень большим и оказывать существенное влияние на их поведение. Поэтому равновесные физические состояния называют релаксационными состояниями. Повышение температуры, понижение энергии межмолекулярного взаимодействия и уменьшение размеров элементов надмолекулярной структуры приводят к ускорению релаксационных процессов, т. е. к ускорению достижения системой равновесного состояния.[7, С.147]

Влияние температуры на процессы деструкции надо исследовать в связи с физическим состоянием полимера, которое определяется изменением его механических свойств, протекающим по определенному механизму в зависимости от того, находится[14, С.39]

Наконец, при еще более низких температурах подвижность сегментов резко уменьшается; это уменьшение подвижности сегментов, как и другие явления, связанные с процессами молекулярного движения, носит кооперативный характер, вследствие чего полимер застекловывается и приобретает все признаки твердого тела. Стеклообразное состояние является третьим основным физическим состоянием полимера. *[1, С.40]

Влияние толщины клеевого слоя на прочность зависит также от характера нагружения и распределения напряжения в соединениях. При чистом сдвиге (сдвиг при кручении) прочность соединений значительно меньше зависит от толщины пленки, чем при других видах напряженного состояния. Так, при увеличении толщины на 1,5—2 порядка прочность соединений при кручении снижается на 15%, а при равномерном отрыве и сдвиге— на 45 и 65°/о соответственно. В общем случае проявление «масштабных» и других эффектов зависит от возможности перераспределения напряжений при нагружении, т. е. от скорости протекания релаксационных процессов в отвержденном клее. Скорость релаксации напряжений определяется химическим составом и топологической структурой сетки, а также физическим состоянием пленки. В стеклообразном состоянии эти факторы оказывают большее влияние на прочность соединений, чем в области Тс и выше.[8, С.115]

В отличие от низкомолекулярных веществ аморфные полимеры обладают еще одним физическим состоянием — высокоэластическим. Полимер в высокоэластическом состоянии способен[11, С.21]

Влияние температуры. Влияние температуры на процессы механической деструкции следует рассматривать в тесной связи с физическим состоянием исследуемого полимера, стеклообразным, высокоэластичным или вязкотекучим, которое обусловлено изменением механических свойств, протекающим по характерному для каждого из них механизму.[14, С.158]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
5. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
6. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
7. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
8. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
9. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
10. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
11. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
12. Аскадский А.А. Химическое строение и физические свойства полимеров, 1983, 248 с.
13. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
14. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
15. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.

На главную