На главную

Статья по теме: Физической структуры

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Протяженность блоков сопряжения и расстояние между ними зави-сят от метода синтеза полимера с сопряженной системой связей, его химического строения, конформационной устойчивости макромолекул, энергии межмолекулярных взаимодействий и от физической структуры полимера. Все факторы, приводящие к нарушению копланарности, снижают степень делокализации электронов и ухудшают свойства полимеров, обусловленные системой сопряжения. Кристаллизация, если она не связана с изменением конформации молекул и нарушением копланарности, приводит к улучшению в первую очередь полупроводниковых свойств, так как переход электронов от одной молекулы к другой облегчается упорядоченным расположением макромолекул в полимере.[3, С.410]

Полиэтилентерефталат плавится при 264 °С. Он обладает хорошей влаго- и светостойкостью и очень высокой термостойкостью. Несмотря на чувствительность эфирной связи к химическим воздействиям, изде-лия из полиэтилентерефталата стойки к действию кислот, щелочей и окислителей, что можно объяснить особенностями физической структуры и трудностью диффузии реагентов внутрь полимера. Полиэтилентерефталат применяется для производства синтетического волокна и пластмасс. Полиэфиры, полученные из этиленгликоля и о- и ж-фталевых кислот, применяются для изготовления лаков.[3, С.351]

Таким образом, химические реакции полимеров имеют много общего с подобными реакциями их низкомолекулярных аналогов. Однако специфика полимеров вносит и существенные отличия. Для полимеров характерно неполное превращение реагирующих функциональных групп. Физическое, фазовое состояние полимеров может заметно влиять на это отличие — доступ реагента может быть облегчен или затруднен к местам расположения функциональных групп в макромолекулах. Поэтому характерным признаком продуктов химических превращений полимеров является их композиционная неоднородность. Классификация химических реакций полимеров учитывает изменения как химической, так и физической структуры макромолекул. Примеры полимераналогичных, внутримолекулярных и межмакромолекулярных реакций хорошо подтверждают этот тезис. Химические реакции определяют пути стабилизации и модификации свойств полимеров.[2, С.230]

Изучение химических реакций полимеров имеет в виду две важные, но различные цели: модификацию свойств известных и доступных природных или промышленных полимеров и стабилизацию свойств полимера, которые могут изменяться в нежелательную сторону в результате воздействия теплоты, света, воздуха и разных химических веществ, в контакте с которыми находится изделие из полимера. Так, например, защита от тепловых и окислительных воздействий позволяет резко удлинить сроки эксплуатации изделий из полимеров. Совершенно очевидно, что задачи модификации и стабилизации полимеров могут тесно переплетаться, так как в результате модификации могут быть получены более стабильные полимеры. Таким образом, модификацией можно назвать изменение свойств полимеров для получения нового качества или устранения нежелательного качества полимера. Модификация может быть физической и химической. Для улучшения свойств полимеров при физической модификации используется направленное изменение их физической структуры (см. ч. 2), а при химической модификации — химические реакции по функциональным группам или активным центрам ,в макромолекулах. Однако во всех случаях модификация приводит к изменению не только химических, но и физических и механических свойств полимеров. Именно тесная связь этих свойств, как мы уже знаем, определяет ценные качества полимеров в природе, технике и быту.[2, С.215]

В понятие физической структуры вещества входят:[1, С.24]

О влиянии физической структуры полиамидов на скорость их гидролиза высказывались совершенно противоположные взгляды. Так, например, советские исследователи [40] считают, что не обязательно учитывать разное строение аморфных и кристаллических областей в полиамидных волокнах, изучавшихся ими, равно как и не обязательно учитывать влияние этого фактора на гидролиз. Они, однако, считают, что молекулярная ориентация этих волокон оказывает существенное влияние на скорость гидролиза. Полученные ими экспериментальные результаты по гидролизу полиамидных волокон (состав которых не указан) в 0,05 н. и 0,1 н. серной кислоте при 96 и 101° (волокна испытывали в трех разных формах: в виде невытянутой нити и нити, вытянутой в 2 и 4 раза по сравнению с первоначальной длиной) хорошо согласуются с предложенными Ротиняном и Дроздовым [41 ] уравнениями[26, С.17]

При изучении физической структуры полимеров (формы макромолекул и конформационных превращений, водородных связей, надмолекулярной структуры), а также и химического строения применяются разнообразные физические методы исследования: микроскопия (световая, ультрафиолетовая, электронная); рентгенос^-руктурный анализ; электронография; спектроскопия (ультрафиолетовая, инфракрасная, ядерного магнитного резонанса и др.); оптические методы (метод двойного лучепреломления) и др.[7, С.143]

О превращениях физической структуры полиэтилентерефталата можно проследить по зависимости удельной теплоемкости от температуры. УДель-ная теплоемкость возрастает при увеличении числа внутренних степеней свободы, т. е. зависит от возможных видов движения молекул.[4, С.109]

Путем регулирования физической структуры .полимера (изменением соотношения между кристаллической и аморфной фракциями, ориентацией элементов структуры вдоль оси волокна и др.) можно в широких пределах изменять комплекс физико-механических свойств химических волокон. Современные методы формования вискозного волокна и приготовления прядильного раствора позволяют регулировать структуру полимера и тем самым получать волокна с желаемыми свойствами. В последние годы получен ряд новых гидратцеллюлозных волокон. Среди них особый интерес представляют полинозные волокна и высокопрочное вискозное волокно с высоким модулем в мокром состоянии (ВВМ волокно).[11, С.197]

Влияние химической и физической структуры полимера на переход от хрупкого к пластическому разрушению может быть проанализирован, исходя из указанного простого соображения, а также из рассмотрения того, как указанные факторы влияют соответственно на хрупкую прочность и предел текучести материала.[20, С.309]

Долгое время для выяснения физической структуры полимеров пользовались только косвенными методами (рентгенография, электронография и т. д.). За последние годы достигнуты значительные успехи в этой области благодаря развитию метода электронной микроскопии [27], позволяющего непосредственно проследить весь процесс структурообразования от наблюдения формы отдельных молекул и простейших видов агрегации до образования сложных надмолекулярных структур.[13, С.431]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
3. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
4. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
5. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
6. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
7. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
8. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
9. Калинина Л.С. Анализ конденсационных полимеров, 1984, 296 с.
10. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
11. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
12. Серков А.Т. Вискозные волокна, 1980, 295 с.
13. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
14. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
15. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
16. Льюис У.N. Химия коллоидных и аморфных веществ, 1948, 536 с.
17. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
18. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
19. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
20. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
21. Манушин В.И. Целлюлоза, сложные эфиры целлюлозы и пластические массы на их основе, 2002, 107 с.
22. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
23. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
24. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
25. Семенович Г.М. справочник по физической химии полимеров том 3, 1985, 592 с.
26. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
27. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
28. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
29. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.

На главную