На главную

Статья по теме: Характеризует изменение

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Растворение атермическое и сопровождается возрастанием энтропии. Это наблюдается, например, при растворении полимера в соответствующем ему гидрированном мономере (полиизобутилена в изооктане, поливинилацетата в этилаце-тате и др.). Как известно, величина ДЯСМ = Д^см + рД^см характеризует изменение внутренней энергии (Д(УСм)и изменение объема (ДУСм) системы при растворении. Поэтому условие ДЯСМ = 0 обычно означает, что и энергия взаимодействия, и средняя плотность упаковки молекул при растворении полимера в низкомолекулярной жидкости не изменяются по сравнению с исходными компонентами.[2, С.84]

В процессе коллективного исследования 9 лабораторий членов ИЮПАК [172] идентифицирована и выяснена природа надмолекулярных структур в непластифицированном ПВХ. Учеными разных стран назависимо друг от друга установлено, что единицами течения в непластифицированном ПВХ являются частицы диаметром порядка 100 нм, которые не деформируются в процессе переработки, но связывающие их "проходные" макромолекулы могут претерпевать значительные деформации. Как видно из рис. 7.3, полученные зависимости вязкости от температуры характеризуются прямыми, имеющими различный наклон в трех интервалах температур. Различный угол наклона в этих интервалах характеризует изменение энергии актива-ци вязкого течения, что достаточно полно иллюстрирует специфические особенности течения ПВХ.[5, С.187]

Поскольку в этом случае корреляционный параметр g=\* ф = ио. Следовательно, /на основании изучения дизчектрическои поляризации сополимеров полярного мономера с неполярным пртт малых концентрациях полярного компонента можно непосредственно получить величину диполыюго момента, характериз\ющ\[0 строение звена полярного компонента. Поэтому }казаицый метод Может быть использован для определения цо Это имеет большое пракшческое значение в сл>чае, когда гидрированный мономер пе растворяется в цепогтяртюм растворителе При увеличении концентрации полярного мономера взаимодействие между полярными группами в цегш увеличивается и корреляционный параметр уменьшается; его зависимость от концентрации характеризует изменение внутримолекулярного взаимодействия. Методом эффективных дипольных моментов было исследовано межмо окулярное взаимодействие в полимерах, находящихся в высокоэластическом состоянии. С этой целью сопоставлялись результаты исследования параметров корреляции для полимеров в растворе, где отсутствует взаимодействие между макромолекулами, и параметров корреля ции полимеров в высокоэластическом состоянии, в ротором нельзя исключить межмолекуляртюе взаимодействие45 Ч[3, С.294]

Поскольку в этом случае корреляционный параметр g= 1. Цэф# = ио. Следовательно,/на основании изучения диэтекурическои поляризации сополимеров полярного мономера с неполярным при малых концентрациях полярного компонента можно непосредственно поучить величину диполыюго момента, характериз\ющ\[0 строение звена полярного компонента. Поэтому указанный метод Может быть использован для определения цо Это имеет большое прак!ическое значение в сл>чае, когда гидрированный мономер не растворяется в пепогтяртюм растворителе При увеличении концентрации полярного мономера взаимодействие между полярными группами в цепи увеличивается и корреляционный параметр уменьшается; его зависимость от концентрации характеризует изменение внутримолекулярного взаимодействия. Методом эффективных дипольных моментов было исследовано межмочекулярное взаимодействие в полимерах, находящихся в высокоэластическом состоянии. С этой целью сопоставлялись результаты исследования параметров корреляции для полимеров в растворе, где отсутствует взаимодействие между макромолекулами, и параметров корреля ции полимеров в высокоэластическом состоянии, в котором нельзя исключить межмолекулярное взаимодействие45 4е.[4, С.294]

Константа х характеризует изменение энтальпии в системе при смешении полимера с растворителем28. Зависимость константы х от параметров растворимости компонентов с учетом упомянутого выше коэффициента К выражается следующим соотношением:[6, С.17]

Темп-pa механич. С. Гм характеризует изменение деформационного поведения высокоэластич. полимера при данном временном режиме механич. воздействия (значении 6 или v). Темп-ры 1\ и Т„ не связаны друг с другом, т. к. первая зависит от скорости охлаждения, а вторая — от временного режима механич. воздействия. При очень медленных механич. воздействиях (в^ ^104 сек) Ты совпадает с Тс.[17, С.249]

Темп-pa механич. С. Ти характеризует изменение деформационного поведения высокоэластич. полимера при данном временном режиме механич. воздействия (значении 0 или v). Темп-ры Тс и Тм не связаны друг с другом, т. к. первая зависит от скорости охлаждения, а вторая — от временного режима механич. воздействия. При очень медленных механич. воздействиях (0^ >104 сек) Тм совпадает с Тс.[20, С.249]

Из формулы (6.15) видно, что величина а\ характеризует изменение диэлектрических свойств твердого тела при сдвиговых деформациях. Если в выражении (6.18) положить ai = 0, получим выражение для Е* в жидкости. Соотношение (6.18) удобно представить также в виде:[13, С.183]

Перейдем к анализу величины АГ. Как видно из табл. III. 7, корреляция между ДГ и о отсутствует, в то время как наблюдается возрастание Д71 симбатно WK. График соответствующей зависимости показан на рис. III. 19. Можно предположить, что абсолютное значение ДГ характеризует изменение энергии когезии полимера в граничных слоях в результате энергетического взаимодействия с поверхностью наполнителя. Отсюда следует, что для одного и того же полимера значение ДГ зависит от поверхностной энергии наполнителя, т. е. ДГ = f(WK,EK).[9, С.121]

Ориентационная вытяжка, как известно, сопровождается также уменьшением концентрации свернутых изомеров, находящихся в аморфной области и возрастанием числа гранс-конфор-меров [56]. Суммарный cos2 0а, зависящий, вообще говоря, от ориентации и концентрации каждого конформера, в основном характеризует изменение процентного содержания гранс-участ-ков молекулярных сегментов (см. раздел П. 5) для образцов со степенью вытяжки большей, чем К*, поскольку в таких образцах содержание транс-конформеров (—Тт—) в аморфных участках составляет уже 70—80%. Их вклад (определяемый произведением концентрации на cos20_r _, который близок к 1) несравненно более велик, чем вклад всех остальных участков с другими конформациями. Тогда линейный рост cos20a, наблюдаемый для многих полимеров во всем диапазоне ориентацион-ных удлинений [52, 127], ?,чачает возрастание числа грянс-участ-ков в межкристаллитныл аморфных прослойках.[15, С.224]

Для измерения адгезии использовался адгезиометр, созданный для изучения пленочных материалов [7]. Образец склейки закрепляли свободными концами в зажимах прибора, а затем производили расслаивание склейки путем раздвигания склееных полосок под углом 180° со скоростью 0,3—0,8 см/сек. При расслаивании склейки с помощью самопишущего устройства снимали адгезиограмму — диаграмму, которая характеризует изменение величины усилия расслаивания по длине склейки. С помощью диаграммы определяли среднюю величину усилия расслаивания в Г/см.[11, С.307]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
3. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
4. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
5. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
6. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
7. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
8. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
9. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
10. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
11. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
12. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
13. Аскадский А.А. Химическое строение и физические свойства полимеров, 1983, 248 с.
14. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
15. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
16. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
17. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
18. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
19. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
20. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную