На главную

Статья по теме: Химической аппаратуры

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Галогенированные бутилкаучуки используются для изготовления литьевых резинотехнических изделий, теплостой^х транспортерных лент, гуммирования химической аппаратуры, пробок для укупорки фармацевтических препаратов.[2, С.221]

Применение перхлорвинила. Перхлорвинил широко применяется в лакокрасочной промышленности для производства лаков и эмалей, в том числе стойких к атмосферным воздействиям и агрессивным средам. Перхлорвинил используют в химической промышленности для защитного покрытия химической аппаратуры. Он широко используется для получения синтетического волокна хлорин, из которого изготавливают фильтровальные ткани, канаты, ленты для транспортеров, рыболовные сети, ткани для спецодежды и лечебного белья.[3, С.35]

Применение винипласта. Винипласт используют для изготовления различных аппаратов, соединительных муфт, клапанов, труб и фасонных частей к ним, вентилей, корпусов, смотровых фонарей, вентиляционных воздуховодов, вентиляторов, теплооб-менной аппаратуры, футеровки, деталей химической аппаратуры, лабораторных приборов и других изделий.[3, С.30]

Хлоропреновые каучуки относятся к каучукам специального назначения. Наиболее широко их' применяют при изготовлении: бензомаслостойких изделий, прокладочных и уплотнительных деталей, рукавов, транспортерных лент, плоских и клиновых ремней, защитных оболочек электрических проводов и кабелей, гуммировании химической аппаратуры. Растворы и латексыТполихлоропрена используют для получения радиозондовых и шаропилотных оболочек, прорезиненных тканей, из которых изготовляют складные емкости для перевозки и хранения нефтепродуктов, жидких и сыпучих материалов. Низкотемпературный полихлоропрен применяется для изготовления^клеев взамен натуральной гуттаперчи. Хлоропреновые каучуки можно использовать в производстве шин для изготовления наружного слоя боковин, в протекторных смесях для некоторых типов шин..[2, С.190]

Изопреновый каучук широко используют в комбинации с СКН, СКВ, СКД, СКМС, НК для изготовления обуви, уплотнительных, амортизационных, силовых деталей, работающих в условиях нормальных температур на воздухе и в слабых растворах кислот и щелочей. На основе СКИ-3 выпускают листованные резиновые смеси для гуммирования химической аппаратуры, работающей в среде азотной, фосфорной, серной, соляной кислот, растворов хлористого натрия и цинка.[4, С.23]

Благодаря низкой непредельности бутилкаучук и его вулка-низаты обладают повышенной стойкостью к действию кислот, в том числе к концентрированным кислотам, а также к действию концентрированных растворов солей и щелочей. Поэтому бутил -каучук применяют для изготовления рукавов для подачи химических растворов, для обкладки химической аппаратуры, изготовления защитных резиновых перчаток, прорезиненных тканей и одежды, стойких к действию кислот и щелочей. Наряду с этим резины из бутилкаучука отличаются хорошей стойкостью к кислороду, озону и повышенной по сравнению с другими каучуками газонепроницаемостью. Проницаемость воздуха у вулканизатов из бутилкаучука в 10—13 раз меньше, чем у вулканизатов натурального каучука.[6, С.110]

Теплостойкость вулканизатов бутилкаучука позволяет широко использовать бутилкаучуки, в основном каучуки с непредельностью выше 1,6% (мол.), в производстве паропроводных рукавов и транспортерных лент, эксплуатируемых при высоких температурах. Химическая стойкость бутилкаучуков обусловливает его применение для обкладки валов, гуммирования химической аппаратуры, изготовления кислотостойких перчаток, рукавов для перекачивания агрессивных агентов. Благодаря сочетанию химической стойкости, газонепроницаемости, атмосфере- и водостойкости бутил-каучук используют для изготовления прорезиненных тканей различного назначения. Стойкость вулканизатов из бутилкаучука к набуханию в молоке и пищевых жирах позволяет использовать его для изготовления деталей доильных аппаратов и других резиновых изделий, соприкасающихся при эксплуатации с пищевыми продуктами.[1, С.352]

Важнейшая .область применения бутилкаучука — производство автомобильных камер,' которые по воздухонепроницаемости в 8—• 10 раз превосходят камеры из натурального каучука. Бутилкаучук применяют для изютовленйя варочных камер и диафрагм форматоров-вулканизаторов, используемых для производства шин. Благодаря высокой химической стойкости бутилкаучук применяют для гуммирования химической аппаратуры, изготовления кислото,-стойкйх перчаток, шлангов и других изделий, работающих в условиях агрессивных сред. Сочетание химической стойкости, газонепроницаемости, атмосфере- и водостойкости позволяет использовать бутилкаучук для изготовления противогазных масок и прорезиненных тканей различного назначения. Бутилкаучук, заправленный нетоксичным антирксидантом, используют для получения изделий, соприкасающихся с пищевыми'продуктами. Бутилкаучук применяют 'для изготовления герметизирующих составов, губчатых изделий и-изоляции кабелей высокого и низкого напряжения.[2, С.153]

Применяют дивинил-нитрильные каучуки главным образом в производстве масло- и бензостойких резиновых изделий: различных уплотнительных прокладок, маслостойких резиновых рукавов и шлангов и других резиновых технических изделий, соприкасающихся в условиях эксплуатации с нефтепродуктами. Высокие сопротивление истиранию и теплостойкость дают возможность применять дивинил-нитрильные каучуки для обкладки транспортерных лент, предназначенных для транспортировки горячих материалов, обладающих сильным истирающим действием. Повышенная химическая стойкость позволяет использовать их для обкладки химической аппаратуры.[6, С.108]

С каждым годом возрастает производство синтетических полимеров, т. е. высокомолекулярных соединений, получаемых из низкомолекулярных исходных продуктов. Быстро развиваются такие отоасли промышленности, как промышленность пластических масс, синтетических волокон, синтетического каучука, лаков (лакокрасочная промышленность) и клеев, электроизоляционных материалов и др. Промышленность пластических масс располагает в настоящее время большим количеством синтетических полимерных материалов с разнообразными свойствами. Некоторые из них превосходят по химической стойкости золото и платину, сохраняют свои механические свойства при охлаждении до —50 °С и при нагревании до -f-500cC. Другие не уступают по прочности металлам, а по твердости приближаются к алмазу. Из синтетических полимеров получают исключительно легкие и прочные строительные материалы, прекрасную электроизоляцию, незаменимые по своим свойствам материалы для химической аппаратуры. Резиновая промышленность располагает теперь материалами, превосходящими по многим показателям натуральный каучук, одни материалы, например, газонепроницаемы, стойки к бензину и маслам, другие не теряют эластических свойств при температуре от —80 до -|-3000С. Новые синтетические волокна во много раз прочнее природных, из них получаются красивые, несминаемые ткани, прекрасные искусственные меха. Технические ткани из синтетических волокон пригодны для фильтрования кислот и щелочей.[5, С.19]

Обкладка химической аппаратуры ................. 588[6, С.12]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кирпичников П.А. Альбом технологических схем основных производств промышленности синтетического каучука, 1986, 225 с.
3. Кузнецов Е.В. Альбом технологических схем производства полимеров и пластических масс на их основе, 1976, 108 с.
4. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
5. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
6. Белозеров Н.В. Технология резины, 1967, 660 с.
7. АверкоАнтонович Ю.О. Технология резиновых изделий, 1991, 351 с.
8. Башкатов Т.В. Технология синтетических каучуков, 1987, 359 с.
9. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
10. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
11. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
12. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
13. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
14. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
15. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
16. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
17. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
18. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
19. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
20. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
21. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
22. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
23. Фабрикант Т.Л. Асбовинил и его применение в химической промышленности, 1958, 80 с.

На главную