На главную

Статья по теме: Изменению характера

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Введение наполнителей в олигомер приводит к изменению характера зародышеобразования. Очевидно, это может быть обусловлено частичным разрушением существовавших в расплаве ассоциа-тов макромолекул, связанных между собой водородными связями, и образованием новых зародышей в адсорбционном слое. В качестве первого приближения можно предположить, что плотность упаковки макромолекул в адсорбционном слое приближается к плотности упаковки в кристалле. Исходя из параметров элементарной ячейки полиэтиленадипината, находим, что площадь, занимаемая одной макромолекулой на поверхности наполнителя, равна примерно 40 А2. Было найдено, что кристаллизация из высокоэластического состояния не наблюдается для систем; содержащих 20 масс. ч. графита и 5 масс. ч. аэросила. Общая поверхность наполнителей (на 1 масс, ч.) в этих системах составляет соответственно около 12 • 1018 и 10 • 1020 А2. Площадь поверхности, необходимой для связывания всех макромолекул олигомера, 'составляет около 1022 А2 для системы ОЭГА — 20 масс. ч. графита и ОЭГА — 5 масс. ч. аэросила, что значительно больше поверхности наполнителя, находящегося в системе.[6, С.70]

Применение метода ЯМР обусловлено его высокой чувствительностью к изменению характера молекулярных движений. При полимеризации мономерные молекулы теряют значительную часть своей подвижности после присоединения к растущей полимерной цепи; интенсивность теплового движения свободных молекул мономера ограничивается в гораздо меньшей степени. Поэтому в случае блочной полимеризации систему можно рассматривать состоящей из двух фаз, заметно отличающихся молекулярной подвижностью. In(Ao-A)[4, С.266]

Описание кинетики любого физико-химического процесса, приводящего к резкому изменению характера температурной зависимости изучаемой величины, может быть проведено с использованием уравнений реакций первого или второго порядка. Исходя из того, что распределение образующихся в облученном полимере ионов неравномерно, можно считать, что процесс излучательной рекомбинации подчиняется не бимолекулярному уравнению (как это имеет место при однородном распределении ионов), а мономолекулярному уравнению реакции. Если ионы в облученном полимере распределены равномерно, то скорость изменения концентрации N связанных зарядов одного знака при рекомбинации, согласно теории бимолекулярной кинетики,[1, С.239]

Возможность применения метода ЯМР для измерения степени конверсии прежде всего обусловлена высокой чувствительностью его к изменению характера молекулярных движений.[2, С.227]

Изоморфное замещение этилентерефталатных звеньев полиэтилентерефталата этиленгексагидротерефталатными приводит к повышению кристалличности, изменению характера депрессии температуры плавления и стеклования полиэфира. Волокна из такого сополимера обладают повышенной способностью к эффективной ориентационной вытяжке. Для регулирования степени кристалличности и температуры плавления (от 368° до[14, С.206]

При уменьшении концентрации мономера скорость роста макромолекулы будет падать и в кэнце концов станет меньше скорости ее кристаллизацгл. Это приведет к изменению характера зависимости w от [М] (см. рис., точка А на прямой 2). Такого типа зависимости наблюдались при полимеризации триоксана в различных растворителях.[12, С.308]

При уменьшении концентрации мономера скорость роста макромолекулы будет падать и в конце концов станет меньше скорости ее кристаллизации. Это приведет к изменению характера зависимости w от [М] (см. рис., точка А на прямой 2). Такого типа зависимости наблюдались при полимеризации триоксана в различных растворителях.[13, С.308]

Известно, что при отжиге чистой холоднокатаной Си происходят наиболее яркие изменения характера кристаллографической текстуры, когда текстура деформации изменяется на текстуру рекристаллизации. Это приводит к коренному изменению характера анизотропии упругих свойств в данном материале [245, 250-253].[3, С.174]

Учитывая, что взаимодействие между цепными участками в студнях является функцией концентрации высокополимера, по аналогии с растворами можно ожидать появления релаксационной зависимости и при деформации концентрированных студней. Наряду с этим усиление взаимодействия между цепными участками может привести также к изменению характера локальных связей, а следовательно, и к смещению температуры плавления студня.[10, С.305]

Измерение релаксационных свойств полимергомологических рядов, начиная с мономеров и олигомеров и вплоть до типичных высо-кополимеров, позволяет составить следующую общую картину изменения вязкоупругих свойств при характерных значениях молекулярных масс. Если Mk — молекулярная масса кинетического сегмента, участвующего в единичном акте переноса при вязком течении, то при достижении молекулярных масс порядка (5—10) Mk возникают зацепления и величина Ме = (5—10) Mk отвечает расстоянию между узлами флуктуационной сетки зацеплений [см. формулу (3.32)]. В области молекулярных масс Мг, близких к 2Ме, образуется сетка зацеплений, что приводит к изменению характера зависимости вязкости от молекулярной массы и возможности развития больших обратимых (высокоэластических) деформаций. При дальнейшем уве-[8, С.278]

Это представление о физической структуре волокна совершенно отличается от того, что вытекало из мицеллярпой теории Марка—Мейера. По Марку— Мейеру, в идеальном волокне мицеллы расположены совершенно правильно и параллельно оси волокна, наподобие кирпичеобразной кладки. Такое волокно является фактически монокристаллом и, следовательно, термодинамически устойчивой системой, обладающей минимумом свободной энергии. Реальные волокна отличаются от идеального лишь тем, что в них некоторая часть мицелл дезориентирована относительно оси волокна, вследствие чего в системе возникают поверхности раздела между кристалликами, свободная энергия системы возрастает и поэтому она не является равновесной. Отсюда следует, что при любом процессе, самопроизвольно протекающем в волокне, ориентация его может только повышаться. Но если целлюлозные гели рассматривать как высокоструктурированные жидкости, то ориентация цепей главных валентностей не будет вести к образованию монокристалла, а лишь к изменению характера среднестатистического распределения их направлений относительно оси волокна. Таким образом, новейшие представления о природе целлюлозы выдвинули вопрос об устойчивости ориентации и характере ее изменения под влиянием различных воздействий, способных вызвать нарушение структуры целлюлозы как псевдокристаллического вещества, обла-[9, С.18]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
3. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
4. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
5. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
6. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
7. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
8. Виноградов Г.В. Реология полимеров, 1977, 440 с.
9. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
10. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
11. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
12. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
13. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
14. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.

На главную