На главную

Статья по теме: Измерения коэффициента

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Методы измерения коэффициента диффузии основаны на оценке скорости "размывания" границы между раствором полимера и растворителем.[1, С.40]

Метод продольного разреза заключается в том, что определяется распределение меченого диффузанта в плоскости, перпендикулярной нанесенному слою. Распределение диффузанта здесь удобно оценивать радиографически. Описан метод тонкого слоя для измерения коэффициента диффузии, также основанный на применении меченых атомов [475], но отличающийся от перечисленных рядом достоинств. Он заключается в нанесении на тонкий образец радиоактивного диффузанта и определении активности образца во времени. Коэффициент диффузии D определяется из угла наклона прямой, построенной в координатах[6, С.130]

Наконец, при решении задач теплопередачи используется коэффициент температуропроводности а = k/(pCp). Значение ее можно подсчитать по приведенной формуле, но обычно его получают посредством прямых замеров, поскольку измерение коэффициента температуропроводности удается выполнять более точно, чем измерения коэффициента теплопроводности. На рис. 5.12 представлены температурные зависимости коэффициента температуропроводности, а также зависимости р (Т), k (Т) и Ср (Т) для поликарбоната.[2, С.122]

Применение импульсной техники обычно дает больше сведений о характере молекулярного движения в полимерах, чем метод непрерывного воздействия. Существует еще одно применение импульсного метода ЯМР — измерение коэффициентов самодиффузии в расплавах полимеров методом спинового эха (см. 8.2.2). Важно знать коэффициент самодиффузии, так как тогда можно оценить размеры молекул в расплаве, что практически является единственным способом их оценки. К сожалению, измерения коэффициента самодиффузии возможны только тогда, когда он не слишком мал, т. е. при не очень больших молекулярных массах.[3, С.226]

Измерение коэффициентов диффузии полимеров связано со значительными экспериментальными сложностями. Так как процесс протекает с очень небольшой скоростью, многие из рассмотренных методов определения коэффициента диффузии оказываются неприменимыми. Например, сорбционным методом не удалось измерить какого-либо изменения интенсивности излучения в образцах, покрытых слоем бутадиен-стирольного каучука с радиоактивной меткой [174]. Непригодным оказался сорбционный метод для изучения диффузии высокомолекулярного бутадиен-винилпири-динового каучука СКМВП-15 в бутадиен-стирольный, изопрено-вый и полихлоропреновый каучуки [478]. Поэтому имеющиеся в литературе данные относятся главным образом к коэффициентам самодиффузии макромолекул или к коэффициентам диффузии полимеров низкого молекулярного веса, а в некторых случаях значения коэффициентов диффузии полимерных диффузантов получены расчетным путем или экстраполяцией [161, 172, 176, 478— 480]. В работах [172, 479, 480] приведены результаты измерения коэффициента диффузии меченного тритием полиизопрена и натурального каучука в натуральный каучук. Коэффициент диффузии при 100 °С для диффузанта с низким молекулярным весом (9000— 28 000) имел значение порядка 10"13 см2/с. Была обнаружена четкая зависимость D от молекулярного веса диффузанта [172, 479—480]. По данным измерения D для низкомолекулярных членов гомологического ряда диффузантов были рассчитаны коэффициенты самодиффузии натурального каучука и полиизобути-лена [161]. Расчеты показали, что увеличение молекулярного веса на порядок приводит к понижению коэффициента диффузии на два порядка. Эксперименты, описанные в работе [478], свидетельствуют о том, что увеличение молекулярного веса диффузанта (бутадиен-винилпиридинового каучука ДМВП-15) на два порядка приводит к увеличению коэффициента диффузии также на два порядка. Однако принятая в [478] методика введения радиоактивной метки путем обработки раствора ДМВП-15 раствором HG136 не вполне надежна. Экстраполяцией были рассчитаны коэффициенты самодиффузии полиэтилена, а также диффузии полиэтилена в полипропилен и полиизобутилен при 130—120 °С [471]. Полученные значения!) составили 10"10 —10~12 см2/с. В табл.III.1 приведены заимствованные из литературы результаты измерения коэффициентов диффузии и самодиффузии высокомолекулярных соединений.[6, С.133]

Поскольку количественного соотношения между коэффициентом поступательного трения и молекулярным весом молекул полимера нет, измерение коэффициента диффузии не дает возможности непосредственно находить молекулярный вес. Это возможно только при сочетании измерения коэффициента диффузии с другими методами, основанными на изучении гидродинамических свойств макромолекул в растворе, например, с измерением седиментации в ультрацентрифуге (см. гл. V) или вязкости [9].[7, С.122]

Ошибки измерения коэффициента диффузии при про-[4, С.257]

Методы измерения коэффициента диффузии основаны на измерении скорости размывания границы между раствором исследуемого вещества (с концентрацией с0) и растворителем.[7, С.122]

Высокая чувствительность предлагаемого метода иллюстрируется приведенными выше результатами исследования механических свойств раствора полистирола. Для получения количественной меры чувствительности метода следует сравнить формулу (22) с основным расчетным выражением, применяемым в методе измерения коэффициента отражения [2, 5][8, С.211]

Полимер Диффузант If |в S СО измерения коэффициента[6, С.134]

В аппаратуре, обычно используемой в методе измерения коэффициента отражения, длина пути волны между последовательными отражениями составляет 8 см. Поэтому чувствительность метода, основанного на использовании линии задержки, оказывается в 16 раз выше, чем метода отражений. Именно этот факт позволяет проводить измерения свойств образцов, вязкость которых составляет всего несколько сантипуаз.[8, С.211]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
5. Шатенштейн А.И. Практическое руководство по определению молекулярных весов и молекулярно-весового распределения полимеров, 1964, 188 с.
6. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
7. Рафиков С.Р. Методы определения молекулярных весов и полидисперности высокомолекулярных соединений, 1963, 337 с.
8. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
9. Виноградов Г.В. Реология полимеров, 1977, 440 с.
10. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
11. Нестеров А.Е. Справочник по физической химии полимеров Том1, 1984, 375 с.
12. Жен П.N. Идеи скейлинга в физике полимеров, 1982, 368 с.
13. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 4, 1959, 298 с.
14. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.

На главную