На главную

Статья по теме: Медицинской промышленности

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

БК не токсичен. Определенные марки вулканизатов допущены для использования в пищевой и медицинской промышленности. Полимер пожароопасен. Большое значение имеет его выпускная форма. Обычно у каучуков в виде крошки температура воспламенения на 50-100° ниже, чем у брикетов, рулонов, ленты. Особенно низкие значения температуры вспышки (Твсп) и воспламенения (Твос) имеют жидкие и растекающиеся до 570 К БК, что объясняется склонностью к реакции деполимеризации с элиминированием изобутилена (около 470 К). Значения ТВСП/ТВОС (К) составляют для БК-1 675 Т 491/524, БК-2045 Т 462/462 при стандартных температурах самовоспламенения 684 К и 675 К соответственно [3, с.149].[4, С.260]

Благодаря физиологической инертности и легкой стерилизуе-мости силоксановые вулканизаты нашли разнообразное применение в фармацевтической, пищевой и медицинской промышленности. Из них изготавливают различные пробки, уплотняющие прокладки, пленки и другие изделия, находящиеся в контакте с пищевыми продуктами, лекарствами, питьевой водой; детские соски и другие предметы санитарии и гигиены, зонды, катетеры, прозрачные трубки для переливания крови и т. д. Силоксановые композиции холодного отверждения используют в пластической хирургии, а также для получения оттисков при протезировании зубов. Легкая вживляемость силоксановых резин в организм позволяет изготовлять из них сердечные клапаны, искусственные сосуды, дренажные трубки и т. д.[1, С.498]

Многообразие способов переработки пластизолей в изделия и покрытия обусловливает их широкое применение во многих отраслях народного хозяйства: в автомобилестроении в качестве антикоррозионных, уплотняющих, абразивостойких, противошумных и изоляционных покрытий; в консервной промышленности в качестве уплотняющих мастик; в медицинской промышленности для изготовления деталей медицинских инструментов; в производстве товаров народного потребления для изготовления детских игрушек, перчаток, обуви, стеклосетки; в производстве строительных материалов для изготовления линолиума, обоев и т.д.[5, С.261]

Пластические массы на основе ацетатов целлюлозы нашли широкие области применения. Главным видом пластических масс на основе АЦ являются этролы. В Советском Союзе, РФ этролами обычно называли твердые гранулированные пластические массы, предназначенные для производства различных изделий. Слово этрол происходит сокращенно от области применения получаемых изделий - электричество, техника, радио (начальные буквы Э, Т, Р.). В дальнейшем это же название пластических масс перешло и на другие области применения пластмасс на основе АЦ и в частности на изделия для медицинской промышленности, для декоративной отделки мебели, музыкальных инструментов и т.д.[6, С.83]

Блок-сополимеры получают различными методами, но все они основаны на образовании реакционноспособных центров или функциональных групп на концах макромолекул одного мономера в присутствии полимеризующегося второго мономера. Один из методов их получения — синтез «живых» полимеров при анионной полимеризации с последующим добавлением второго мономера. Так, например, получают термоэластопласты — блок-сополимеры изопрена или бутадиена со стиролом. После полимеризации стирола с образованием на конце цепи макроаниона добавляют бутадиен, который сополимеризуется с таким блоком полистирола, а на конце цепи остается макроанион. При добавлении новой порции стирола происходит образование третьего блока в пределах одной макромолекулы. Полученные блок-сополимеры (в описанном случае типа СБС: стирол — бутадиен — стирол) обладают ценными свойствами: они прочны и эластичны при комнатной температуре и термопластичны при повышенной (80—100°С). Из них готовят изделия для медицинской промышленности, подошвы для обуви и[2, С.64]

Блок-сополимеры получают различными методами, но все они основаны на образовании реакционноспособных центров или функциональных групп на концах макромолекул одного мономера в присутствии полимеризующегося второго мономера. Один из методов их получения — синтез «живущих» полимеров при анионной полимеризации с последующим добавлением второго мономера. Так, например, получают термоэластопласты — блок-сополимеры изопрена или бутадиена со стиролом. После полимеризации стирола с образованием на конце цепи макроаниона добавляют бутадиен, который сополимеризуется с таким блоком полистирола, а на конце цепи остается макроанион. При добавлении новой порции стирола происходит образование третьего блока в пределах одной макромолекулы. Полученные блок-сополимеры (в описанном случае типа СБС: стирол — бутадиен — стирол) обладают ценными свойствами: они прочны и эластичны при комнатной температуре и термопластичны при повышенной (80—100° С). Из них готовят изделия для медицинской промышленности, обувной (низ обуви) и другие изделия, где не требуется высокая термостойкость, но нужна прочность'и высокоэластичность при комнатной и более низких температурах.[7, С.25]

Блок-сополимеры получают различными методами, но все они основаны на образовании реакционноспособных центров или функциональных групп на концах макромолекул одного мономера в присутствии полимеризующегося второго мономера. Один из методов их получения — синтез «живущих» полимеров при анионной полимеризации с последующим добавлением второго мономера. Так, например, получают термоэластопласты — блок-сополимеры изопрена или бутадиена со стиролом. После полимеризации стирола с образованием на конце цепи макроаниона добавляют бутадиен, который сополимеризуется с таким блоком полистирола, а на конце цепи остается макроанион. При добавлении новой порции стирола происходит образование третьего блока в пределах одной макромолекулы. Полученные блок-сополимеры (в описанном случае типа СБС: стирол — бутадиен — стирол) обладают ценными свойствами: они прочны и эластичны при комнатной температуре и термопластичны при повышенной (80—100° С). Из них готовят изделия для медицинской промышленности, обувной (низ обуви) и другие изделия, где не требуется высокая термостойкость, но нужна прочность и высокоэластичность при комнатной и более низких температурах.[9, С.25]

П. п. подразделяют на пленки общетехнического назначения и пленки для пишевой и медицинской промышленности, к к-рым предъявляют повышенные токсикологические требования.[8, С.404]

П. п. подразделяют на пленки общетехнического па-значения н пленки для типовой и медицинской промышленности, к к-рым предъявляют повышенные токсикологические требования.[10, С.402]

По технической классификации материалы и изделия из АЦ можно подразделить на материалы и изделия общего назначения, электротехнические и радиотехнические, нетоксичные (для медицинской промышленности и для бытовых целей).[6, С.95]

вания в пищевой и медицинской промышленности. Полимер пожароопасен. Боль-[3, С.260]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
3. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
4. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
5. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
6. Манушин В.И. Целлюлоза, сложные эфиры целлюлозы и пластические массы на их основе, 2002, 107 с.
7. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
8. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
9. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
10. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
11. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
12. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.

На главную