На главную

Статья по теме: Межплоскостные расстояния

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Брэгговские межплоскостные расстояния на рентгенограммах также дают основные структурные параметры: общую толщину d слоя ламеллярной структуры (рис. 1), расстояние D между осями двух соседних цилиндров для гексагональной структуры (рис. 2) или между центрами сфер для кубических структур (рис. 3). Рентгенограмма не дает информации ни о толщинах d\ и d-в индивидуальных слоев (рис. I), ни о радиусах R цилиндров или сфер (рис. 2 и 3). В принципе величины этих параметров могут быть получены по относительным интенсивностям рентгеновских рефлексов [1]. Однако измерение интенсивностей малоугловых рефлексов затруднительно и не совсем точно, в связи с чем этот метод используется редко.[6, С.210]

Поскольку tg 2d = I/a, то отсюда можно найти угол рассеяния, соответствующий данному рефлексу. Зная углы рассеяния, по уравнению (VI. 8) рассчитывают межплоскостные расстояния d (в нм).[1, С.193]

Измеряют расстояние 2/ между симметричными рефлексами, расположенными на слоевых линиях с одним и тем же номером. Рассчитывают с использованием уравнения (VI. 8) межплоскостные расстояния. Полученные данные вносят в таблицу.[1, С.192]

Если пленку поместить в специальную камеру цилиндрической формы, чтобы образец находился в ее центре, а пучок лучей был перпендикулярен оси цилиндра, то на фотопленке возникнет система дуг, симметричных относительно первичного пучка. Полученная таким образом рентгенограмма называется дебаеграммой. Измерив расстояние между симметричными дугами на дебаеграмме (или расстояние между соответствующими симметричными максимумами на ди-фрактограмме), можно найти угол 2 в, а затем по формуле Вульфа-Брэгга рассчитать соответствующие межплоскостные расстояния.[3, С.171]

Образец аморфного ПЭТФ в виде полоски шириной 2 мм и длиной 20 мм помещают в термостат на 1 ч при 180°С для изотермической кристаллизации. Другой такой же образец закрепляют в рентгеновской камере, юстируют в ней и затем в фотокомнате производят зарядку камеры с образцом рентгеновской пленкой. Камеру устанавливают на столик рентгеновского аппарата для экспозиции. По истечении 1 ч кристаллизации первый образец извлекают из термостата и закрепляют в камере для съемки. После экспозиции фотообработки и сушки рентгенограммы сопоставляют и рассчитывают межплоскостные расстояния.[1, С.191]

Межплоскостные расстояния ( I)[7, С.17]

Межплоскостные расстояния (d) для изотропного волокна, а также для ориентированных целлюлозных волоков, рентгенограммы которых искусственно приведены[7, С.62]

Таблица 1 Межплоскостные расстояния для тринитроцеллюлозы (А)[7, С.34]

Таблица 2 Межплоскостные расстояния для кристаллического полидиметилсилоксана[7, С.171]

Рентгенограммы, полученные тремя упомянутыми методами, по форме отличаются друг от друга. Однако межплоскостные расстояния характеризуют данное вещество и не зависят от того, каким методом получена рентгенограмма. Поэтому таблица, содержащая значения межплоскостных расстояний и соответствующих относительных интенсивностей отраженного излучения, является основой для сравнения рентгенограмм, полученных любыми методами.[8, С.75]

Структура полиэтилена родственна структуре нормальных насыщенных углеводородов; поэтому неудивительно, что и их рентгенограммы очень похожи. Межплоскостные расстояния и относительные интенсивности, которые соответствуют кристаллографическим плоскостям (М)0, ОйО, hkO), параллельным длинным осям молекул насыщенных углеводородов, почти не изменяются с увеличением числа атомов углерода п от 20 до 3000 [8]. Рентгенограммы насыщенных углеводородов, полученные методом порошка, отличаются друг от друга только за счет дифракционных плоскостей, не параллельных длинным осям молекул (00/, hOl, Okl, hkt). Расстояния между этими плоскостями постепенно изменяются с увеличением п до 130, а после этого остаются постоянными. Таким образом, «концевые эффекты» в полиэтилене не играют существенной роли, и можно считать, что в отличие от углеводородов с п = 20—130 при установлении структуры кристаллов молекул полиэтилена не нужно учитывать упаковку типа «хвост к хвосту».[8, С.86]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
2. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
3. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
4. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
5. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
6. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
7. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
8. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
9. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
10. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
11. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
12. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
13. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 4, 1959, 298 с.
14. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную