На главную

Статья по теме: Молекулярная структура

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Молекулярная структура сополимеров. Молекулярная структура сополимеров, наряду с обычными структурными характеристиками, в значительной степени определяется параметрами, специфичными для этого класса эластомеров. К таким параметрам в первую очередь следует отнести композиционную неоднородность сополимера (т. е. наличие в нем молекул различного состава) и характер чередования звеньев сомономеров в молекулярных цепях. Предельными случаями различного чередования звеньев яв-ляются, очевидно, блоксополимеры, с одной стороны, и альтернант-ные сополимеры, с другой.[1, С.27]

МОЛЕКУЛЯРНАЯ СТРУКТУРА КАУЧУКОВ, ПОЛУЧЕННЫХ СПОСОБОМ КАТАЛИТИЧЕСКОЙ ПОЛИМЕРИЗАЦИИ В РАСТВОРЕ[1, С.54]

Раздел I. МОЛЕКУЛЯРНАЯ СТРУКТУРА и МАКРОСКОПИЧЕСКИЕ СВОЙСТВА ЭЛАСТОМЕРОВ[1, С.749]

Большую роль в процессах пластикации играет молекулярная структура каучуков (степень разветвленности, молекулярная масса и другие параметры), так как вероятность разрывов или активации химических связей пропорциональна общему количеству переплетений, которое данная макромолекула способна обра-[1, С.76]

Глава 3 Связь механизма и условий синтеза эластомеров 54 с их молекулярной структурой. Молекулярная структура отдельных ткпов синтетических кау-чуков[1, С.749]

Для промышленности пластмасс и синтетических волокон наибольший интерес представляет изотактический полипропилен. Поэтому молекулярная структура и ее влияние на физико-механические свойства полимера рассматриваются ниже, в основном, применительно к данному стереоизомеру полипропилена.[4, С.67]

В заключение главы остановимся вкратце на наиболее важных аспектах зависимости реологии полимеров и их технологических свойств от молекулярной структуры. Прежде всего надо уяснить, как молекулярная структура полимера, определяемая современными экспериментальными методами, связана с реологическими свойствами расплава, измеряемыми на реометрах. Следующая задача состоит в установлении связи между обеими этими характеристиками полимеров, их технологическими свойствами и поведением при переработке (в особенности их формуемостью и свойствами изделий).[2, С.175]

Влияние температуры и давления полимеризации, а также концентрации инициатора на молекулярную массу и полидисперсность ПЭВД продемонстрировано на рис. 7.16-7.18. Они взяты из работы [53], в которой исследована молекулярная структура около 100 образцов ПЭВД, синтезированных в реакторах автоклавного типа с отношением длина : внутренний диаметр от 1,25 до 5,3 при изменении температуры полимеризации от 110 до 330 °С, давления - от НО до 200 МПа, молярной Доли инициатора (органические пероксиды и кислород) - от 10 до 80 млн" *. Время пребывания реакционной смеси в реакторе составляло 40 и 65 с. Данные рисунков относятся к проведению процесса в реакторе „идеального" смешения с отношением длины к диаметру 1,25. Резкое падение полидисперсности с температурой в области высокой температуры полимеризации объясняется разложением инициатора; температура, при которой начинается падение, тем ниже, чем активнее инициатор.[6, С.137]

Причина усадки заключается в эластическом восстановлении резиновой смеси. При прохождении резиновой смеси через зазор между валками молекулы каучука под действием внешних сил распрямляются и располагаются вдоль направления выхода листа с каландра, вследствие этого молекулярная структура каучука приобретает упорядоченный характер. После прекращения действия внешних сил в результате хаотического движения молекулярных звеньев происходит разрушение упорядоченной молекулярной структуры, молекулярные звенья снова принимают хаотическое расположение, а молекулы каучука переходят к своей обычной свернутой форме. Таким образом, причиной усадки является особенность молекулярной структуры каучука, наличие молекул большой длины, состоящих из отдельных звеньев, ко-[3, С.284]

Ориентированный полимер проще всего получить под действием одноосно растягивающего напряжения. За процессами, происходящими при растяжении образца в одном направлении, удобно следить по динамическим кривым деформации. На рис. 4.21 показана кривая деформации полипропиленовых волокон, которую можно разделить на два характерных участка (стадия текучести и стадия упрочнения). На стадии текучести молекулярная структура полипропиленового волокна претерпевает ряд существенных[4, С.83]

Молекулярная структура.......................... 101[5, С.6]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
3. Белозеров Н.В. Технология резины, 1967, 660 с.
4. Амброж И.N. Полипропилен, 1967, 317 с.
5. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
6. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
7. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
8. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
9. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
10. Бартенев Г.М. Физика полимеров, 1990, 433 с.
11. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
12. Мухутдинов А.А. Экологические аспекты модификации ингредиентов и технологии производства шин, 1999, 400 с.
13. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
14. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
15. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
16. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
17. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
18. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
19. Северс Э.Т. Реология полимеров, 1966, 199 с.
20. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
21. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
22. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
23. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
24. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
25. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
26. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
27. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
28. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
29. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
30. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
31. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
32. Петров Г.С. Технология синтетических смол и пластических масс, 1946, 549 с.
33. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную