На главную

Статья по теме: Ориентированных полимерах

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Механизм процесса роста и смыкания микротрещин в ориентированных полимерах основан на молекулярной модели микротрещины (рис. VI. 17). Разрыв связей в вершине трещины, независимо от типа связей, происходит с переходом потенциальной энергии через барьер U (рис. VI. 18). Обратный процесс — рекомбинация связей — сопровождается переходом через барьер U'. Эта схема для удобства последующего изложения приведена для микротрещины в разгружаемом образце (0 = 0).[2, С.210]

Наиболее распространенной формой надмолекулярного образования в ориентированных полимерах является фибрилла, которая может иметь различное строение. У ориентированных аморфных полимеров фибриллы сравнительно гомогенны. У ориентированных аморфно-кристаллических полимеров (например, у целлюлозы - см. рис. 9.3) фибриллы гетерогенны: чередуются кристаллические и аморфные области, причем проходные макромолекулы переходят из одного кристаллита в другой через аморфную прослойку. Механическая прочность ориентированных полимеров непосредственно связана со строением фибрилл. Аморфные прослойки из проходных макромолекул обеспечивают эластичность (способность к большим обратимым деформациям) в сочетании с высокой прочностью на разрыв. Прочность тем больше, чем больше доля проходных макромолекул. При 100%-й кристалличности полимер имеет высокую прочность на разрыв (макромолекулы, прервавшиеся в кристаллической части, почти не влияют на прочность из-за высокой энергии когезии), но малую эластичность из-за отсутствия аморфных прослоек. Уменьшение числа проходных макромолекул в случае складчатого строения снижает прочность на разрыв.[8, С.142]

После образования зародышевых субмикроскопических трещин дальнейшее развитие разрушения в кристаллических ориентированных полимерах приводит к слиянию этих трещин и образованию за счет этого более крупных магистральных трещин, завершающих разрушение. Трещины субмикроскопических размеров 1—10 нм наиболее отчетливо наблюдаются у кристаллических ориентированных полимеров, например у полимерных волокон, тогда как трещины следующего уровня — микроскопических размеров (от единиц до десятков микрометров)—наиболее характерны для аморфных неориентированных полимеров (ПММА, ПС и т. п.), где с течением времени на поверхности нагруженных образцов возникает огромное число микротрещин, которые могут быть трещинами «серебра». Изучение кинетики трещинообразования показало, что оно является затухающим во времени процессом, как и накопление разорванных связей или субмикротрещин.[3, С.325]

Мюллер [62], а также Кауш и Бехт [55] отметили, что процессы проскальзывания и изменения конформационного состояния цепей в энергетическом отношении' могут быть подобными разрывам связей, если последние происходят вследствие искажения полимерной системы под действием напряжения или в результате локального нагрева. Тогда увеличение внутренней энергии связано с ослаблением ближнего порядка, или с уменьшением числа водородных связей, или с внутренними напряжениями между цепями и кристаллитами. Наличие межмолекулярных сил значительной амплитуды в ориентированных полимерах можно подтвердить рядом оптических, спектроскопических и механических экспериментов. В частности, достойны внимания следующие результаты. Веттегрень и др. [70] отметили, что для полностью термообработанной пленки ПЭТФ максимум полосы поглощения, характерный для колебаний основной цепи, приходится на 975 см-1, в то время как для ориентированной пленки ПЭТФ он соответствует 972 см^1. Ланн и Яннас [71] нашли, что полоса несимметричных колебаний участка цепи с метальными группами с максимумом при[1, С.260]

В ориентированных полимерах наиболее часто встречающимися типами структуры являются фибриллярные кристаллы.[4, С.101]

В одноосно ориентированных полимерах дихроичное отношение находят путем измерения интенсивностей при направлении ориентации сначала параллельно, а затем перпендикулярно оси эталонного образца чаапример, направлении вытяжки).[11, С.212]

Как уже отмечалось, основным элементом надмолекулярной организации в ориентированных полимерах является микрофибрилла. В принципе, существует три основных пути возник-374[9, С.374]

Наиболее распространенной характеристикой степени ориентации является величина со$!6, где 6 — угол между осью данного участка структурного элемента и осью ориентации образца. В аморфных ориентированных полимерах ориентация никогда не бывает полной и созгО редко достигает 0,5. Это связано, в первую очередь, со стерическими затруднениями для перегруппировок и с высокой подвижностью макромолекул.[5, С.66]

Высокоупорядоченные структуры, например ориентированные жидкие кристаллы, вызывают ориентацию введенных в них радикалов; при этом наблюдается изменение положения линий СТС в спектре ЭПР. В ориентированных полимерах - полиэтилене, полипропилене, натуральном каучуке - этот эффект не наблюдается. Хотя анизотропия вращения возрастает, однако влияние ориентации полимера не настолько велико, чтобы привести к ориентации радикала. Растяжение некристаллизующихся каучуков до 500-600 % не приводит к изменению частот и анизотропии вращения парамагнитного зонда. Ориентация сказывается на молекулярной подвижности эластомеров, если она вызывает процесс кристаллизации.[7, С.367]

В среднем величина / + I' = d приблизительно постоянна по всему объему кристалло-аморфного полимерного тела, называется она большим периодом. Большой период, а также / и /' непосредственно находятся методом малоуглового рассеяния рентгеновых лучей, причем удобнее проводить измерения на ориентированных полимерах; впрочем, и от неориентированных,[9, С.96]

При определении области плавления этим методом надо иметь в виду, что и некристаллический полимер может обнаружить двойное лучепреломление, если его молекулы окажутся ориентированными под действием внешних сил. Ориентация может происходить при придашшвании расплавленного полимера покровным стеклышком или в ходе получения пленки, а также при разрезании образца. В ориентированных полимерах исчезновение двойного лучепреломления происходит не в области температуры плавления образца. Это можно исключить с помощью повторного определения, так как ориентация в расплавленном полимере не может появиться без -внешнего воздействи. Более точное определение температуры плавления проводят с помощью дифференциального термического анализа [94].[10, С.89]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
5. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
6. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
7. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
8. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
9. Бартенев Г.М. Физика полимеров, 1990, 433 с.
10. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
11. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
12. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
13. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
14. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
15. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
16. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
17. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
18. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
19. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
20. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
21. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
22. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
23. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
24. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
25. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
26. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
27. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
28. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
29. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
30. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
31. Перепелкин К.Е. Растворимые волокна и пленки, 1977, 104 с.

На главную