На главную

Статья по теме: Переработке полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

При переработке полимеров вследствие очень высокой вязкости полимерных расплавов «турбулентная диффузия» труднодостижима, а молекулярная диффузия совсем незначительна, поскольку она протекает чрезвычайно медленно. Таким образом, преобладающим механизмом смешения остается конвекция. То же справедливо для смешения твердых компонентов, где конвекция — единственно возможный механизм смешения. Следует, однако, отметить, что в том случае, когда один из компонентов — низкомолекулярный продукт (например, некоторые антиоксиданты, вспенивающие агенты, красители для волокон, добавки, улучшающие скольжение), существенный вклад в процесс смешения может внести и молекулярная диффузия. Более того, эффективность применения таких добавок должна зависеть от степени развития молекулярной диффузии. Молекулярная диффузия, естественно, играет важную роль в процессах, связанных с массопереносом, например при дегазации или сушке. Однако в настоящей главе основное внимание уделено системам, где молекулярной диффузией можно пренебречь.[1, С.182]

Как правило, при переработке полимеров наблюдаются течения ползучести, в которых вязкие силы гораздо больше инерционных. Классическими примерами таких течений являются течения, рассматриваемые в гидродинамической теории смазки, течения Хила — Шоу и обтекание погруженных тел очень вязкими жидкостями. В этом случае уравнение движения имеет следующий вид:[1, С.109]

Применение зародышеобразователей при переработке полимеров целесообразно потому, что с их помощью удается управлять распределением размеров сферолитов в формуемых изделиях. Выше уже отмечалось, что при охлаждении всех видов полимерных изделий, за исключением очень тонких пленок, поверхностные слои остывают[1, С.57]

Формирование структур используется не только при переработке полимеров. Этот технологический прием давно применяется в металлургии. В качестве примера можно привести создание широкого диапазона различных свойств у стали путем термообработки.[1, С.45]

Смешение — процесс, уменьшающий композиционную неоднородность, важная стадия в переработке полимеров, поскольку механические, физические и химические свойства, а также внешний вид изделий существенно зависят от композиционной однородности. Можно привести много примеров использования смешения в технологии производства полимеров и, напротив, трудно найти производство, где бы не использовали смешение. Смешивать можно как твердые, так и жидкие компоненты. Примером смешения твердых компонентов может служить введение в полимер концентратов пигментов, волокон или других добавок. Диспергирование технического углерода в полиэтилене — типичный пример смешения твердого вещества с жидкостью, а смешение расплавов полимеров — это смешение жидкости с жидкостью. В производстве полимеров наиболее характерными смесями являются системы: твердое вещество — полимерная жидкость и смеси полимерных жидкостей.[1, С.181]

Наука, изучающая закономерности трения, износа и смазки, называется трибологией [8]. Закономерности сухого трения играют значительную роль в переработке полимеров. Большинство процес-[1, С.83]

Конечно, если давление вызывает температурные переходы, Ср изменяется заметно: падает при застекловывании и сильно возрастает и затем снижается при кристаллизации. Таким образом, при переработке полимеров можно ожидать существенного влияния давления на Ср при температурах среды несколько выше Те и Тт, но не ниже этих температур. Для практических целей можно считать, что Ср от давления не зависит, медленно меняется при температурах ниже Tg и Тт и в расплаве (15—30 % на 100 °С), сильно возрастает при плавлении (в 5—10 раз) и скачкообразно возрастает приблизительно на 10 % при переходе через температуру стеклования. В табл. 5.1 для ряда промышленных полимеров приведены значения Ср при комнатной температуре, а также значения плотности, коэффициентов теплопроводности и термический коэффициент линейного расширения.[1, С.128]

В этой книге принято соглашение о направлении действия сил, следующее из анализа переноса количества движения, использованное ранее Бердом с соавторами [1 ]. Как уже отмечалось во вводных замечаниях к этой главе, при переработке полимеров одновременно происходит теплоперенос, перенос количества движения, а иногда и массоперенос. Как будет показано ниже, такое соглашение о знаках соответствует физической симметрии различных транспортных явлений.[1, С.105]

В последующих трех разделах будут обсуждены три из упомянутых реологических уравнений: ЛВУ, ОНЖ и КЭФ. Первое вскрывает вязкоупругую природу поведения расплавов полимеров; различные частные виды второго широко применяются для решения задач по переработке полимеров; с помощью третьего уравнения можно предсказывать разности нормальных напряжений в установившихся сдвиговых течениях, что полезно в вискозиметрии.[1, С.147]

Выделение всех операций, связанных с перемещением сыпучих твердых материалов, в отдельную элементарную стадию оказывается вполне оправдано, если принять во внимание специфические особенности поведения сыпучих систем, образованных твердыми частицами полимера. Для грамотного проектирования заводов по переработке полимеров и конструирования перерабатывающего оборудования необходимо хорошо разбираться в вопросах, связанных с процессами[1, С.32]

Теория рассматривает гидродинамическое поведение тонких пленок жидкости толщиной от долей микрометра до десятков микрометров. В пленках в результате относительного движения ограничивающих жидкость поверхностей могут возникать значительные давления (порядка миллионов ньютонов на квадратный метр). При переработке полимеров толщина «пленок», как правило, на несколько порядков больше, но применение для расчета этих процессов допущений, лежащих в основе теории смазки, достаточно обосновано, поскольку вязкость полимерных расплавов на несколько порядков выше вязкости смазочных масел. Вот почему следует кратко рассмотреть основы гидродинамики смазки [17].[1, С.117]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
3. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
4. Амброж И.N. Полипропилен, 1967, 317 с.
5. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
8. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
9. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
10. Барштейн Р.С. Пластификаторы для полимеров, 1982, 197 с.
11. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
12. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
13. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
14. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
15. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
16. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
17. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
18. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
19. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
20. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
21. Липатов Ю.С. Теплофизические и реологические характеристики полимеров, 1977, 244 с.
22. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
23. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
24. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
25. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
26. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
27. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
28. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
29. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
30. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
31. Фишер Э.N. Экструзия пластических масс, 1970, 288 с.
32. Чегодаев Д.Д. Фторопласты, , 196 с.

На главную