На главную

Статья по теме: Понимания механизма

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Для понимания механизма образования активных ди-сульфидных подвесков RSSB существенно (см. рис. 4.9) то, что они обнаружены только в системах со значительным содержанием ДБТД (10—20, масс. ч.). Для этих систем характерно увеличение порядка реакции расхода ДБТД от первого (для систем с меньшей концентрацией ДБТД, ко второму, что вместе с другими данными [39; 40] свидетельствует о переходе от мономолекулярного к индуцированному бимолекулярному распаду по схеме:[7, С.208]

Для лучшего понимания механизма плавления рассмотрим вначале плавление в канале постоянной глубины с постоянной величиной я|з на всем протяжении зоны плавления. Последнее означает постоянство физических свойств и скорости движения пробки. Уравнение (12.2-21) при Zx == 0 и Хг = W можно записать следующим образом:[1, С.445]

С точки зрения понимания механизма процессов, происходящих на границе раздела фаз полимер— наполнитель, было бы правильнее сравнивать времена релаксации не при одинаковых температурах, а при соответственных температурах, равно удаленных от температуры стеклования. Как видно из рис. III. 9[10, С.106]

Основополагающее значение для понимания механизма адгезии полимеров имеет, несомненно, выявление характера взаимодействия адгезива с поверхностью субстрата. В частности, представляется необходимым более широко исследовать каталитические эффекты на границе адгезив — субстрат, а также молекулярные и химические силы, действующие в зоне контакта. Для понимания механизма адгезии важными являются вопросы адсорбции. Адсорбция полимеров имеет свои специфические особенности и всестороннее исследование этих особенностей — одна из важнейших задач дальнейшего изучения механизма адгезии.[12, С.387]

Структура граничных слоев полимеров имеет большое значение для понимания механизма структурообразования в наполненных дисперсных системах. Поэтому представляется важным рассмотрение адсорбции полимеров на границе раздела фаз и конформации адсорбированных цепей [24]. Адсорбция полимеров на твердых поверхностях из растворов весьма специфична и существенно отличается от адсорбции низкомолекулярных веществ. Специфические особенности связаны с тем, что при адсорбции на поверхность адсорбента переходят не изолированные полимерные молекулы (за исключением случая предельно разбавленных растворов), а агрегаты макромолекул или другие надмолекулярные образования, возникающие в растворах уже при относительно невысоких концентрациях. Модель адсорбции молекулярных агрегатов является[10, С.10]

Изучение температурной зависимости вязкости полимеров имеет важнейшее значение для понимания механизма процесса их течения и для выяснения связи между структурой макромолекул и их поведением при деформировании. Температурная зависимость вязкости полимеров существенно влияет на их технологические свойства, поскольку чувствительность вязкости к изменению температуры определяет не только выбор режима переработки, но зачастую качество изделий и требования к контрольно-регулирующей аппаратуре.[14, С.121]

Вопрос о роли физических взаимодействий с поверхностью имеет очень большое значение для понимания механизма усиливающего действия наполнителей в полимерах. Поэтому оценка того вклада, который, вносит <в эффективную плотность сетки взаимодействие с поверхностью, является необходимой. К сожалению, такая оценка пока проведена только для наполненных вулканизатов каучуков, причем густота сетки и число физических и химических связей в ней определены по данным о набухании.[10, С.33]

Описанные изменения свойств полимера на поверхности в результате взаимодействия с ней имеют существенное значение для понимания механизма усиления полимеров, в частности стеклянным волокном, где важную роль играет соотношение модулей упругости наполнителя и отвержденного связующего. Эффекты упрочнения обусловлены- не только высокими механическими показателями армирующего материала, не только изменением условий перераспределения напряжений в системе при деформации, но и изменением микрогетерогенности полимеров в тонких слоях на поверхности наполнителя вследствие ограничения их гибкости и из^ менения характера упаковки. Отсюда ясно,, что влияние прочности адгезионной связи наполнителя и полимера сказывается не только на условиях перераспределения напряжений в системе, но и на изменении свойств самого полимера. Можно считать, что адгезия, зависящая от свойств полимера, в свою очередь, оказывает влияние на его свойства. Увеличение прочности адгезионной связи приводит к более эффективному повышению жесткости цепей и способствует возрастанию рыхлости упаковки молекуд в поверхностном слое. Более рыхлая упаковка молекул способствует релаксации напряжений при деформации. Это может иметь важное значение как фактор, изменяющий условия развития трещин в образце при' его[10, С.281]

Из изложенного следует, что в области теории адсорбции имеется много нерешенных проблем, имеющих существенное значение для правильного понимания механизма процесса. Нельзя, однако, думать, что все нерешенные проблемы адсорбции относятся к области теории. Развитие теории задерживается еще и потому, что многие вопросы недостаточно исследованы экспериментально. К таким вопросам можно отнести экспериментальное исследование влияния[9, С.185]

Определение величины ДЯ для полимеров и сравнение их ее значениями ДЯ для ниэкомолекулярных соединений сходной: строения сыграло важную роль для понимания механизма течения полимеров, Оказалось, что увеличение молекулярного веса низко-молекулярных соединений приводит только к ограниченному рост^ ДЯ, предельные значения котЪрых достигаются при молекулярные весах незначительных по сравнению с молекулярными весами по лимеров. Следовательно, температурная зависимость вязкости по лимера определяется размерами не макромолекул, а их небольшие участков — сегментов, которые и являются кинетически самостоя тельными структурными элементами полимера. Под действией теплового движения происходят перемещения (перескоки) имение сегментов из одного положения в другое. Обычно сегменты вклю чают не больше 30—40 атомов основной цепи макромолекул, Tai как механизм течения полимеров сегментальный, в размерное™ величины ДЯ теплота активации относится к \юлю сегментов.[2, С.254]

Определение величины ДЯ для полимеров и сравнение их со значениями ДЯ для ыиэкомолекулярных соединений сходного строения сыграло важную роль для понимания механизма течения полимеров. Оказалось, что увеличение молекулярного веса низко-молекулярных соединений приводит только к ограниченному росту ДЯ, предельные значения которых достигаются при молекулярных весах незначительных по сравнению с молекулярными весами полимеров. Следовательно, температурная зависимость вязкости полимера определяется размерами не макромолекул, а их небольших участков —сегментов, которые и являются кинетически самостоятельными структурными элементами полимера. Под действием теплового движения происходят перемещения (перескоки) именно • сегментов из одного положения в другое. Обычно сегменты включают не больше 30—40 атомов основной цепи макромолекул. Так как механизм течения полимеров сегментальный, в размерности величины ДЯ теплота активации относится к молю сегментов.[5, С.254]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
3. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
4. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
5. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
6. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
7. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
8. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
9. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
10. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
11. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
12. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
13. Рафиков С.Р. Методы определения молекулярных весов и полидисперности высокомолекулярных соединений, 1963, 337 с.
14. Виноградов Г.В. Реология полимеров, 1977, 440 с.
15. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
16. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
17. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
18. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
19. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
20. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
21. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
22. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
23. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
24. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную