На главную

Статья по теме: Проведенных исследований

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Результаты проведенных исследований позволяют заключить, что наибольшое количество молекулярных комплексов образуется в расплаве при мольных соотношениях компонентов 0,69:0,31 и 0.74:0,26 (массовые соотношения 0,45:0,55 и 0,55:0,45) и резком охлаждении расплава с 130° С до комнатной температуры.[4, С.208]

В результате проведенных исследований в СССР в качестве эмульгатора была принята натриевая соль сульфопроизводных газойлевой фракции бакинской нефти, подвергавшейся очистке от нефтяных масел и примесей железа. Этот эмульгатор вошел в практику эмульсионной полимеризации- хлоропрена для получения каучуков и латексов под маркой СТЭК, обеспечивая достаточную стабильность эмульсии и латексов. СТЭК применялся в эмульсии в сочетании с канифольным мылом, которое способствует повышению стабильности эмульсии в процессе полимеризации. В процессе выделения каучука из латекса, при подкислении, кислоты канифоли выделяются в свободном виде и смешиваются с каучуком, что способствует повышению пластичности и стабильности поли-хлоропрена и улучшению его обрабатываемости. Вследствие того, что СТЭК не подвергается биологическому разложению, он в настоящее время заменяется, например, на алкилсульфонат натрия — «волгонат» (очищенные сульфопроизводные низкомолекулярных парафинов), а также на другие более эффективные алкилсульфо-наты (например, марка Е-30), которые подвергаются биологическому разложению и позволяют очистить сточные воды.[1, С.371]

В результате проведенных исследований непрерывный способ полимеризации хлоропрена в эмульсии был внедрен в промышленное производство на Ереванском химическом комбинате и в настоящее время основные типы хлоропренового каучука производятся по этому способу.[1, С.378]

На основании проведенных исследований закономерностей процессов полимеризации хлоропрена разработаны способы получения каучуков и латексов большого ассортимента, причем некоторые из них, обладающие комплексом ценных свойств, не были ранее описаны в литературе и получены впервые. Специфические особенности различных типов каучуков определяются следую-—щнми факторами: 1) природой применяемых регуляторов (сера, меркаптаны) и их содержанием в полимере; 2) температурой полимеризации (0-^5 или 40 °С); 3) составом и содержанием стабилизаторов; 4) рецептурой реакционной смеси и условиями полимеризации; 5) природой сомономеров и составом сополимеров.[1, С.383]

В результате проведенных исследований можно сделать вывод о том, что наноструктурные Ni и Си, полученные ИПД, обладают значительно измененными тепловыми характеристиками, такими как параметр Дебая-Уоллера и температура Дебая. Эти результаты показали, что характер тепловых колебаний атомов в на-ноструктурных и крупнокристаллических чистых металлах существенно различается. Этим можно объяснить значительные изменения в тепловых свойствах и существенное ускорение диффузии, обнаруженное при недавних исследованиях диффузионно-контролируемых процессов в наноструктурных ИПД материалах [140]. Из результатов настоящего исследования становится ясным, что атомные смещения в наноструктурных Ni и Си, полученных ИПД, связаны с присутствием упругих искажений. Более того, очевидно, что в большей степени этому влиянию подвержены тепловые колебания атомов.[2, С.78]

Анализ результатов проведенных исследований показывает, что в отношении пиковой и средней потребляемой мощности и интенсивности работы применение кусков каучука мелкого размера дает явный экономический эффект. По-видимому, это преимущество наиболее четко выражено для кусков массой 0,5—5 кг. Следует отметить, что эта закономерность выявлена только для натурального каучука. Аналогичные данные для синтетических каучуков пока отсутствуют.[3, С.63]

Вместе с тем, как отмечалось выше, существуют нерешенные проблемы в получении таких наноматериалов традиционными методами — газовой конденсацией или шаровым размолом в связи с сохранением в них при компактировании некоторой остаточной пористости и дополнительными трудностями при приготовлении массивных образцов [1, 2, 4]. Как результат, до недавнего времени были выполнены лишь единичные работы по исследованию механических свойств наноструктурных металлов и сплавов, имеющих размер зерен около 100 нм и менее. Большинство проведенных исследований связано с измерениями микротвердости, и полученные данные весьма противоречивы. Например, в некоторых работах [320, 321] обнаружено разупрочнение при уменьшении зерен до нанометрических размеров, в то же время в ряде других работ [322, 323] наблюдали в этом случае упрочнение, хотя наклон кривых был меньше по сравнению с соотношением Холла-Петча.[2, С.182]

На основе проведенных исследований механизм взаимодействия ОБС с ПС можно представить следующим образом:[5, С.133]

На основе проведенных исследований разработана и освоена в прошит енности новая выпускная форма противостарителя на основе смеси et -метнлбензилфенолов - внсококошдентрированный еамозмуль-гнрующийся протиаостаритель АО-20 С[16, С.138]

Результаты проведенных исследований сложных смесей кристаллических компонентов серных вулканизующих систем позволяют сделать некоторые обобщения относительно влияния оксида цинка и серы на активацию ускорителей и их последующего физико-химического взаимодействия при температурах приготовления и вулканизации резиновых смесей.[5, С.176]

Результаты проведенных исследований позволяют заключить, что изменение кинетических характеристик вулканизации резиновых смесей, уменьшение или устранение выцветания из них серы и ускорителей, а также снижение дозировки оксида цинка при использовании серных вулканизующих систем в виде гранулированных эвтектических композиций зависят от их состава. При этом возможны следующие варианты введения компонентов серных вулканизующих систем в резиновые смеси.[5, С.193]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
3. Андрашников Б.И. Интенсификация процессов приготовления и переработки резиновых смесей, 1986, 225 с.
4. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
5. Мухутдинов А.А. Экологические аспекты модификации ингредиентов и технологии производства шин, 1999, 400 с.
6. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
7. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
8. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
9. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
10. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
11. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
12. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
13. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
14. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
15. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
16. Бурмистров Е.Ф. Синтез и исследование эффективности химикатов для полимерных материалов, 1974, 195 с.
17. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
18. Почепцов В.С. Химия и технология поликонденсационных полимеров, 1977, 140 с.
19. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную