На главную

Статья по теме: Проводить полимеризацию

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Для того чтобы проводить полимеризацию с высокими скоростями до полного 'превращения мономера, по ходу (процесса вводят отдельные компоненты ОВС или применяют трений компонент ОВС, ограничивающий скорость образования радикалов [8, с. 212; 27; 43; 44, с. 5].[18, С.14]

Указанная система позволила проводить полимеризацию в эмульсии при низких температурах в кислых средах с получением каучуков, содержащих функциональные — карбоксильные группы.[1, С.138]

В патентной литературе рекомендуется проводить полимеризацию этилена с использованием катализаторов на основе соединений ванадия в среде инертных растворителей — алифатических предельных (Cs—Cg), циклоалифатических или ароматических углеводородов. Каталитический комплекс может образовываться непосредственно в реакционном объеме или его готовят предварительно в другом аппарате. Наиболее часто в патентах встречается второй способ, причем, как правило, условия предварительного образования комплекса (концентрация реагентов, температура, длительность контактирования) обеспечивают образование гетерогенного катализатора.[7, С.114]

Скорость полимеризации е-капролактама в присутствии этой каталитической системы значительно выше, чем при гидролитической полимеризации. Поэтому можно проводить полимеризацию при относительно низкой температуре (ниже температуры плавления полимера) и при атмосферном давлении. В этом случае превращение жидкого (расплава) е-капролактама в твердый капролон- происходит одновременно по всей массе, что дает возможность получать полимер непосредственно в формах. Обычно этот метод применяется для получения крупногабаритных и толстостенных изделий.[2, С.82]

При взаимодействии окислителя (инициатора) с восстановителем (активатором) образуется высокая концентрация промежуточных лабильных свободных радикалов, позволяющих проводить полимеризацию при низкой температуре с высокой скоростью. Как правило, наибольшая скорость полимеризации достигается при эквимолекулярном соотношении окислителя и восстановителя. Энергия активации реакции полимеризации в присутствии восстановителя понижается со 126 до 42 кДж/моль. Способность снижать энергию активации полимеризации — одно из основных и характерных особенностей окислительно-восстановительных систем, инициирующих эти процессы.[1, С.136]

Гидроперекись— соединения железа — диенолы. Система, состоящая из гидроперекиси, соединения Fe2+ и аскорбиновой или диоксималеиновой кислоты, относится к числу наиболее активных, и позволяет проводить полимеризацию в щелочных и кислых эмульсиях при температурах до —50 °С [5].[1, С.138]

Наиболее распространенным промышленным методом получения полиакрилонитрила является инициированная водно-эмульсионная полимеризация НАК, которая осуществляется как по периодической, так и по непрерывной схеме. В качестве инициатора применяют персульфат калия, а в качестве восстановителей (промоторов) — бисульфит, тиосульфат или гидросульфит натрия. Это позволяет проводить полимеризацию при 'невысоких температурах в условиях, при которых возможность побочных процессов сведена к минимуму. Особенностью полимеризации НАК в водной среде являет-[2, С.46]

При полимеризации часто используют окислительно-восстановительное инициирование. В этом случае в систему вместе с инициатором вводят восстановитель — промотор. В результате окислительно-восстановительной реакции образуются свободные радикалы, инициирующие полимеризацию. Особенностью окислительно-восстановительного инициирования является очень низкая энергия активации: 50,1 — 83,6 кДж/моль (12 — 20 ккал/моль) вместо 146 кДж/моль (35 ккал/моль) при термическом распаде инициатора. Это позволяет проводить полимеризацию при более низких температурах, при которых уменьшается возможность протекания побочных процессов, приводящих к изменению кинетики реакции и свойств получаемого полимера.[4, С.70]

Последний метод, который следует рассмотреть,— это эмульсионная полимеризация. В этой системе вновь вода используется как носитель, однако добавляется эмульгатор (синтетическое моющее вещество), и смесь воды, мономера, катализатора и эмульгатора интенсивно перемешивается. В этих условиях мономер диспергируется в водной среде с образованием очень мелких частиц почти коллоидных размеров [5]. Одним нз больших преимуществ эмульсионной полимеризации является то, что она происходит в жидкой системе, где можно легко регулировать температуру реакции. Таким образом, удается быстро проводить полимеризацию и получать продукты с очень большим молекулярным весом.[5, С.196]

Процесс полимеризации простых виниловых эфиров, как и полимеризация ненасыщенных ацеталей, протекает по катионному механизму под влиянием катализаторов Фриделя—Крафтса, образующих комплексы с водой, эфиром или спиртом, обычно присутствующими в системе. Наиболее интенсивно процесс идет в присутствии трехфтористого бора. Полимеризация сопровождается бурным выделением тепла, что часто вызывает потемнение и даже обугливание продукта. При большом количестве катализатора и повышенной температуре реакции получаются сравнительно низкомолекулярные пластичные или вязкие полимеры. Поэтому рекомендуется проводить полимеризацию в присутствии небольших количеств катализатора (доли процента) и при температуре —40° и ниже.[3, С.295]

Значительным событием в химии полимеров явилось открытие К. Циглером и Дж. Натта в 1955 г. метода синтеза нового типа высокомолекулярных соединений — стереорегулярных полимеров, отличающихся регулярностью структуры и чрезвычайно высокими физико-механическими показателями. Большие успехи достигнуты в последние годы в области синтеза полимеров в твердой фазе, а также создания термостойких полимерных материалов и полимеров с системой сопряженных связей. Использование олигомеров для синтеза полимеров значительна расширило возможности создания новых материалов с хорошими физико-механическими свойствами. Поскольку олигомеры обладают вязкостью, достаточной для формования из них изделий, то становится возможным проводить полимеризацию уже в самих изделиях. Это устраняет большие трудности, которое возникают при формовании изделий из высокоплавких и труднорастворимых полимеров. Серьезные успехи достигнуты также в синтезе элемеитоорганических и неорганических полимеров.[4, С.53]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кузнецов Е.В. Альбом технологических схем производства полимеров и пластических масс на их основе, 1976, 108 с.
3. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
4. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
5. Сёренсон У.N. Препаративные методы химии полимеров, 1963, 401 с.
6. Амброж И.N. Полипропилен, 1967, 317 с.
7. Архипова З.В. Полиэтилен низкого давления, 1980, 240 с.
8. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
9. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
10. Розенберг М.Э. Полимеры на основе винилацетата, 1989, 175 с.
11. Беднарж Б.N. Светочувствительные полимерные материалы, 1985, 297 с.
12. Блаут Е.N. Мономеры, 1951, 241 с.
13. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
14. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
15. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
16. Розенберг М.Э. Полимеры на основе винилацетата, 1983, 175 с.
17. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
18. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
19. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
20. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
21. Бажант В.N. Силивоны, 1950, 710 с.
22. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
23. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
24. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
25. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
26. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
27. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.
28. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
29. Петров Г.С. Технология синтетических смол и пластических масс, 1946, 549 с.
30. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную