На главную

Статья по теме: Распределения температур

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

На рис. 6.12 представлены для сечения \ в минимальном зазоре (h0) расчетные распределения температур в листе резиновой смеси на основе НК, каландруемой на промышленном каландре 610x1800 мм. Влияние температуры валков наиболее существенно в пристенном слое — области интенсивного теплообразования (grad vx=max) и теплообмена. Обычно максимальные температуры (на 10—20 °С большие, чем средние) устанавливаются на расстоянии 0,2—0,5 мм от поверхности валка; если температура валков существенно превосходит температуру смеси, максимумы вырождаются, а АТ=Тъал—Тр.с (где Твал— температура валка, а Гр.с — температура резинового слоя).[7, С.234]

Вследствие низкого коэффициента теплопроводности резины при вулканизации реальных профилей степ CHI» вулканизации поверхности изделия и его внутренних слоев может получиться различной. Следовательно, с одной стороны, применение теплоносителей с высоким коэффициентом теплоотдачи выгодно, с другой — нет, так как при этом возникает опасность получения различной степени вулканизации профиля по его сечению из-за неравномерности распределения температур по сечению заготовки. Применение в качестве теплоносителя горячего воздуха характеризуется наименьшими перепадами температур по сечению вулканизуемого профиля, однако в этом случае необходимо применять вулканизаторы длиной 30 50 м, что неприемлемо с точки зрения занимаемых производственных площадей. Псевдоожиженпый слой сыпучего материала,— по-видимому, наиболее пригодный тип теплоносителя, так как при его использовании легко может быть изменено значение коэффициента теплоотдачи в зависимости от требуемого размера РТИ. Наиболее полно этим условиям отвечают различные неорганические сыпучие материалы типа песков. Менее предпочтительным материалом являются стеклянные шарики, так как при прекращении подачи ожижающего агента может произойти их размягчение и слипание в местах контакта с нагревательными элементами. В установках с псевдоожиженным слоем можно вулканизовать сложные профили, в том числе пустотелые, без изменения их конфигурации, варьировать температуру вулканизации в пределах 140 -250 СС. Этот метод имеет и недостатки: необходимость очистки поверхности свулканизованного профиля от частиц теплоносителя на выходе из вулканизатора и тщательного уплотнения всех движущихся частей установки во избежание попадания в них частиц теплоносителя.[2, С.271]

Расплав полимера должен транспортироваться, и в нем необходимо создавать избыточное давление для продавливания через формующую фильеру или нагнетания в полость формы. Эта элементарная стадия полностью зависит от реологических характеристик расплава и оказывает определяющее влияние на конструкцию перерабатывающего оборудования. Создание давления и плавление могут происходить одновременно; обе эти стадии могут взаимодействовать друг с другом. Расплав полимера может подвергаться смесительному воздействию. Смешение расплава производится с целью создания равномерного распределения температур или для получения однородной композиции (в тех случаях, когда в машину поступает смесь, а не чистый полимер). «Проработка» полимера, направленная на улучшение его свойств, и многочисленный набор смесительных операций, включающих диспергирование несовместимых полимеров, измельчение и дробление агломератов и наполнителей, — все это относится к элементарной стадии «смешение».[1, С.33]

Один из них связан так же, как и в случае ПИБ, с кинетическими особенностями реакции сополимеризации изобутилена с изопреном. Реакция в присутствии BF3, A1C13 и других электрофильных катализаторов протекает очень быстро. Уже при смешении реагирующей смеси с раствором катализатора непосредственно на входе потоков в реактор процесс протекает почти мгновенно. Каждая капелька обволакивается тонкой пленкой полимера, и рост цепи лимитируется диффузией мономеров в образовавшуюся полимерно-мономерную частицу. Поскольку коэффициент теплопроводности полимера невысок и фронт распределения температур и скоростей процесса носит факельный или близкий к факельному характер (подобно ПИБ), температура внутри полимер-мономерных частиц всегда существенно выше средней температуры реакционной смеси в реакторе-полимеризаторе, фиксируемой приборами. Естественно, что по этой причине происходит снижение молекулярной массы БК и отклонение средней степени ненасыщенности от ожидаемого значения. Хотя реакционная смесь находится в реакторе не менее 30-40 мин, степень превращения изобутилена составляет около 75% (масс), поэтому важное значение приобретает быстрое и тонкое диспергирование раствора катализатора в объеме реакционной зоны при смешении его с раствором мономера. Как и в случае получения ПИБ, необходимо знание кинетических параметров и топохимических особенностей процесса синтеза БК, при этом вполне возможно и существенное изменение конструкции аппарата-полимеризатора.[8, С.321]

Новым в технологических схемах подготовительных цехов является использование резиносмесителей с камерой объемом 0,62—0,65 м3 на заключительной стадии процесса смешения, а также для приготовления маточных и готовых камерных смесей, т. е. в условиях жесткого ограничения допустимой температуры смеси. Из опыта эксплуатации резиносмесителя с камерой объемом 0,65 м3 (РС-650) установлено, что средний уровень качественных характеристик получаемых в нем смесей не ниже, (а в некоторых случаях и выше) уровня соответствующих показателей смесей, получаемых в резиносмесителях с объемом камер 0,25 и 0,33 м3 (РС-250 и РС-330). В то же время из-за более сильного деформационно-силового и теплового воздействия на смесь, приводящего к некоторой неравномерности распределения температур по массе заправки, смеситель РС-650 используют лишь для смесей с вязкостью по Муни не выше 50—70 единиц и с временем до начала подвулканизации не менее 18—20 мин. При изготовлении камерных смесей на основе бутилкаучука и каучуков общего назначения в случае четкой организации технологического процесса, тщательной очистки смесительного оборудования и строгого соблюдения параметров в процессе смешения, линия с РС-650 позволяет получить смеси, качество которых не уступает качеству смесей, изготовленных в резиносмесителе РС-250.[5, С.59]

Рис. 3.23. Поля распределения температур в[4, С.157]

Рис. 3.23. Поля распределения температур в процессе полимеризации изобутилена с внешним[8, С.157]

Рис. 11.36. Изменение распределения температур в потоке расплава полиэтилена высокого давления в зависимости от расстояния от входа. Температура стенки равна 130° С; диаметр канала: а — 6 мм; б — 12 мм.[9, С.137]

Рис. V, 5. Изменение распределения температур в потоке расплава полиэтилена низкой плотности в зависимости от расстояния от входа. Г —403 К; диаметр канала:[10, С.177]

Экспериментальные исследования распределения температур в потоке расплава, приведенные Н. В. Тябиным [8], показывают, что форма профиля температур существенно зависит от направления теплового потока, скорости течения и радиуса канала. Если тепловой поток направлен от расплава к стенке, то в канале малого сечения (d = 6 мм) профиль температур имеет клиновидную форму (рис- V. 5, а).[10, С.175]

Мак-Доналд [1263], исходя из известного распределения температур и давлений в земной коре на различных глубинах, предположил, что переход кварца в коэсит в природе происходит на глубине между 60 и 40 км. Превращениям полиморфных фаз кварца друг в друга посвящены сообщения [1264—1286].[15, С.446]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. АверкоАнтонович Ю.О. Технология резиновых изделий, 1991, 351 с.
3. Сагалаев Г.В. Справочник по технологии изделий из пластмасс, 2000, 425 с.
4. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
5. Андрашников Б.И. Интенсификация процессов приготовления и переработки резиновых смесей, 1986, 225 с.
6. Башкатов Т.В. Технология синтетических каучуков, 1987, 359 с.
7. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
8. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
9. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
10. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
11. Липатов Ю.С. Теплофизические и реологические характеристики полимеров, 1977, 244 с.
12. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
13. Бажант В.N. Силивоны, 1950, 710 с.
14. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
15. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
16. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную