На главную

Статья по теме: Разрушения эластомеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Анализ процесса разрушения эластомеров приводит к заключению о том, что наиболее прочным оказывается материал по крайней мере с двумя типами поперечных связей. Один тип — лабильные связи, сравнительно легко разрушающиеся под нагрузкой (разрушение этого типа связей сопровождается рассасыванием пиков перенапряжений). Другой тип — прочные связи, по которым распределяется основная доля деформирующей нагрузки.[3, С.298]

При изучении механизма разрушения эластомеров важно всегда помнить, что разрушение их происходит в ориентированном состоянии, когда удлинение при разрыве достигает сотен процентов. К. моменту разрыва это уже не тот полимер, который мы взяли в исходном состоянии, поскольку надмолекулярная структура его изменилась в процессе деформации.[2, С.199]

Разрушение полимеров в области высоких температур ф Механика разрушения эластомеров ф Механизм прочности и разрушения эластомеров ф Уравнение долговечности эластомеров ф Разрывное напряжение эластомеров[1, С.7]

Разрушение полимеров в области высоких температур Q Механика разрушения эластомеров ф Механизм прочности и разрушения эластомеров ф Уравнение долговечности эластомеров ф Разрывное напряжение эластомеров[1, С.333]

Как будет показано далее, Я-процессы релаксации ответственны за механизм разрушения эластомеров. В полярных полимерах природа физических узлов молекулярной сетки может быть иной. Например, в бутадиен-нитрильных эластомерах между Х- и 6-процессами обнаруживается я-процесс релаксации (см. рис. 7.2) [7.1], связанный с распадом и рекомбинацией локальных физических поперечных связей, обусловленных ди-поль-дипольным взаимодействием между полимерными цепями CN---NC. Температура перехода этого процесса ГП=90°С, энергия активации 90 кДж/моль, ??г=10~10 с.[5, С.201]

Бикки [12.14] и Хэлпин [12.15] в своих работах предлагают молекулярные теории разрушения эластомеров с учетом дефектов и не-однородностей материала. В результате предложены уравнения, в частности сложный степенной закон, учитывающий временную зависимость прочности. Несмотря на интересные результаты, полученные Бикки и Хэлпином, их уравнения сложны и не поддаются легкой физической трактовке (см. [12.4, с. 196]). Поэтому обратимся к экспериментальным результатам по исследованию временной и температурной зависимостей прочности эластомеров. 12.1.4. Уравнение долговечности эластомеров[1, С.338]

Правильная интерпретация явления усталости макромолеку-лярных материалов создает предпосылки для предотвращения разрушения эластомеров при их длительном постоянном нагру-жении или при разнообразных деформациях. Для этого необходимы, с одной стороны, умеренный механический режим, который уменьшал бы число образующихся свободных макрорадикалов, а с другой стороны, введение соответствующего количества ингибиторов, которые стабилизировали бы их в момент появления.[7, С.190]

В отличие от теорий, в которых дефектность материала не учитывалась, Бикки![7.102] и Хэлпин [7.103, 7.104]! предложили молекулярные теории разрушения эластомеров с учетом дефектов и неоднородностей материала. В результате были получены уравнения, описывающие временную зависимость прочности, в частности, сложный степенной закон. Однако существенным недостатком подхода Бикки и Хэлпина является то, что, признавая существенную роль вязкости, они в своих уравнениях не учитывают в явном виде вклад гистерезисных потерь. Кроме того, их уравнения сложны и не поддаются простой физической трактовке [7.89, с. 196—203]. Поэтому обратимся к экспериментальным результатам по исследованию временной и температурной зависимости прочности эластомеров. Уже первые исследования [7.98, 7.105]| выявили значительное влияние временных эффектов на прочность эластомеров. Для эластомеров между прочностью и скоростью деформации е наблюдается линейная зависимость; характерная для релаксационных процессов:[5, С.224]

Такие эксперименты проводились неоднократно, что позволило Гулю уже в 1952 г. [8, с. 145 — 148; 140, с. 953] иллюстрировать положения термофлуктуационной концепции на примере разрушения эластомеров, а позже на многочисленных примерах исследования разрушения силикатных стекол [141, с. 46], вулка-низатов 1142, с. 267; 494, с. 229; 295, с. 1364; 63, с. 111] и других материалов.[3, С.225]

Было установлено, что для некоторых каучуков энергия активации процесса разрушения совпадает с энергией активации вязкого течения. Это наводит на мысль, что кинетику процесса разрушения эластомеров определяют в основном межмолекулярные связи. Предположение о важной роли межмолекулярного взаимодействия в процессе разрушения было впервые выдвинуто Гулем [3, 23, 24], который считает, что нагружение полимера в первую очередь вызывает разрыв межмолекулярных связей, и лишь после этого начинает расти нагрузка на химические связи.[4, С.302]

Долговечность полимеров выше Тс определяется А-процесса-ми релаксации, ответственными за медленные физические процессы релаксации в эластомерах и вязкое течение. Энергия активации всех процессов вязкоупругости (включая вязкое течение) и разрушения эластомеров одна и та же. Для полярных эластомеров ниже температуры Т л. долговечность и вязкость контролируются зт-релаксационным процессом (распад дшюльных узлов), а выше Тп — по-прежнему ^.-процессами релаксации.[5, С.242]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
3. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
4. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
5. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
6. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
7. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
8. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
9. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную