На главную

Статья по теме: Скоростях охлаждения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Полученный в работе [90] результат показывает, что при малых скоростях охлаждения температурный интервал стеклования вырождается и остается только одна температура стеклования. В общем случае при анализе поведения полимера в области Т < Tgд, большую роль играет скорость охлаждения. Если скорость охлаждения велика, то температуры Tg \ и rg 2 существенно не совпадают, т.е. переход в стеклообразное состояние происходит в более широком интервале температур.[4, С.118]

Если стекла получены из одного и того же исходного состояния при различных скоростях охлаждения q или при различных режимах отжига, их структура различна (зависит от их тепловой истории). Поэтому стекла с различной тепловой историей при нагревании с одной и той же скоростью w будут иметь различные температуры размягчения.[5, С.190]

Процесс размягчения стекла не имеет специфических признаков до тех пор, пока скорость нагревания та же, что и скорость охлаждения, при которой получено стекло. Если же стекла получены при различных скоростях охлаждения или путем различных режимов отжига, то они получаются с различной структурой. Отжиг стекла, как известно, изменяет структуру от менее плотной к более плотной. Иначе говоря, структура стекла зависит от его тепловой «предыстории». Различные по структуре стекла при нагревании с[1, С.93]

Из кинетической теории следует, что в интервале стеклования структура вещества при охлаждении сначала «запаздывает» в нарастающем темпе, затем темп запаздывания замедляется и структура замораживается. В интервале размягчения также наблюдается запаздывание перестройки структуры, но несколько иначе, чем при охлаждении. В результате в температурном ходе изменения структуры (а следовательно, и физических свойств) должен иметь место гистерезис даже при одинаковых скоростях охлаждения и нагревания, что и наблюдалось экспериментально. Однако рассмотренная теория не может претендовать на количественное согласие с реальным процессом стеклования из-за грубости принятой модели вещества, неучета группового механизма релаксации и конкретной структуры различных жидкостей.[2, С.40]

В работах многих иностранных исследователей структурное стеклование рассматривается, тем не менее, как фазовый переход второго рода. Такой прямолинейный подход в силу изложенного следует признать неверным. Однако необходимо обратить внимание на работы Гиббса и ДиМарцио *, которые считали, что Тс некоторым образом связана с истинным равновесным переходом второго рода при температуре Т0, лежащей ниже Тс на 51,6 °С (в соответствии с формулой (П. 2) при Т0 энергия активации становится бесконечно большой, как предполагается, вследствие исчезновения свободного объема]. В этих работах под Тс понимается стандартная («релаксационная») температура стеклования тГ (см. ниже). При больших скоростях охлаждения Тс > Г", т. е. возрастает, а не снижается в соответствии с природой фазовых переходов. Поэтому в подходе Гиббса и ДиМарцио остается много невыясненного.[1, С.90]

Рис. 10.14. Схематическое изображение изменения объема полимера с температурой при различных скоростях охлаждения и нагревания образцов[2, С.264]

Произведя измерения при разных скоростях изменения температуры, можно оценить значение энергии активации соответствующего процесса и установить его молекулярную природу. В случае дилатометрических измерений при одинаковых скоростях охлаждения и нагревания у полимеров отчетливо проявляется температурный гистерезис, свидетельствующий о неравновесном характере соответствующих процессов.[2, С.279]

Если полимер способен к кристаллизации, то на кривой удельного объема при температуре плавления наблюдается разрыв. На рис. 32.2 приведена типичная картина для частично кристаллического полимера, характеризующегося как стеклообразным, так и кристаллическим состоянием. Тт — это температура плавления, тогда как Tgl, Tg2, ... отражают температуры стеклования, полученные при различных скоростях охлаждения. Область между Тт и Tg характеризует переохлажденное состояние, сопровождающееся резкой кристаллизацией. Ниже Tg кристаллизация не может протекать с большой скоростью из-за высокой вязкости системы, поэтому полимер остается в неупорядоченном стеклообразном состоянии. При уменьшении скорости охлаждения переохлаждение захватывает область более низких температур, вследствие чего переход Tg, имеет место при температуре более низкой, чем Tgl. При бесконечно большом времени охлаждения температура стеклования стремится к какому-то предельному значению (Tg]. Г1оли-[6, С.149]

Рис. VI. 3. Зависимость степени кристалличности от молекулярной массы при различных скоростях охлаждения (а) и от температуры закалки (б). Скорость охлаждения v,[8, С.187]

Рис. IV. 4. Неравновесные кривые изменения удельного объема полистирола при разогреве (или охлаждении) при различных скоростях охлаждения (/, 2, 3) и нагревания (4—7):[11, С.156]

Горюнова, Коломиец и Шило [4404] определили области стеклообразования в сплавах халькогенидов Р (фосфора) и других элементов при различных скоростях охлаждения из жидкого состояния.[20, С.473]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
4. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
5. Бартенев Г.М. Физика полимеров, 1990, 433 с.
6. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
7. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
8. Пашин Ю.А. Фторопласты, 1978, 233 с.
9. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
10. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
11. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
12. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
13. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
14. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
15. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
16. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
17. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
18. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
19. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 4, 1959, 298 с.
20. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
21. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
22. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
23. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную