На главную

Статья по теме: Сополимеризации акрилонитрила

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

На примере сополимеризации акрилонитрила с МАМ показано, что отличия в процессе связаны с тем, протекает ли он в водном растворе или в присутствии мономерной фазы. В последнем случае сополимеризация происходит как в водной фазе, так и в образовавшихся частицах и зависит от скорости диффузии в них мономеров из обеих фаз. Вследствие этого на состав сополимера оказывают влияние условия проведения процесса, в частности скорость перемешивания.[5, С.139]

Задача. Определить константы сополимеризации акрилонитрила с 2-метил-5-винилпиридином, если при степени превращения 5% мольные доли акрилонитрила в мономерной смеси и в сополимере были следующие (1 - 5 - номера опытов):[1, С.242]

Растворимость. В табл. 1 показано влияние условий сополимеризации акрилонитрила и целлюлозы в присутствии свободно-радикальных инициаторов на растворимость целлюлозы в сополимере в медьэтилендиаминовом комплексе. Растворимость целлюлозы в продуктах, полученных радиационным методом, больше, чем в продуктах, полученных в присутствии ионов церия [34]. Как сообщалось ранее, число молекул целлюлозы, приходящихся на 1 моль привитого полиакрилонитрила, в первом случае в присутствии водного раствора ZnCl2 колеблется от 5 до 86, а в последнем случае составляет приблизительно 0,4 [42], что объясняется, вероятно, более низкой растворимостью целлюлозы в этом сополимере. Целлюлоза, содержащаяся[6, С.223]

Влияние способа инициирования и типа инициатора свободно-радикальной сополимеризации акрилонитрила с фибриллярной целлюлозой на свойства ткани, полученной из этого сополимера, про-иллюстрируется данными табл. 4 [31]. Молекулярный вес привитого сополимера изменяется от 3,3-10* до 5,9-105 и зависит от способа инициирования и условий эксперимента. Между молекулярным весом привитого сополимера и свойствами ткани на его основе нет определенной зависимости. При условиях реакции сополимеризации Б получаются модифицированные ткани с более высокими значениями разрывной прочности, сопротивления раздиру и истиранию при изгибах и в плоскости. Улучшение свойств обусловлено отчасти влиянием условий эксперимента на морфологию волокон, а также тем, что поперечное сечение волокон круглое и привитой полимер распределен однородно по поперечному сечению. При условиях реакции А начальная форма поперечного сечения целлюлозных волокон не изменяется, а привитой полимер концентрируется в наружных слоях волокна. Ткань, полученная этим методом, характеризуется повышенным сопротивлением истиранию при изгибах и в плоскости и более высокой разрывной прочностью по сравнению с контрольной тканью (из немодифицированной хлопковой целлюлозы). Однако ее сопротивление раздиру меньше, чем у контрольного образца, а сопротивление истиранию при изгибах ниже, чем у образца, полученного в условиях Б. Метод Б может быть развит в непрерывный процесс, при котором ткань вначале погружают в раствор винилового мономера и затем облучают. При всех указанных способах получения сополимеров происходит уменьшение молекулярного веса целлюлозы вследствие окислительной деструкции.[6, С.229]

Для улучшения растворимости полимера, снижения температуры сто размягчения и придания упругости в макромолекулярную цепь, кроме звеньев хлористого винилидена, вводят звенья акрилонитрила или хлористого винила. Константы сополимеризации акрилонитрила и хлористого винилидена являются величинами одного порядка (^=-0,91, г2=;0,37), поэтому сополимер характеризуется довольно однородным составом фракций, образующихся в процессе полимеризации. По мере увеличения в сополимере содержания звеньев акрилонитрила снижается степень кристалличности и температура стеклования и плавления сополимера. Характерной особенностью сополимеров хлористого винилидена и акрилонитрила является хорошая растворимость в ацетоне, дающая возможность формовать из растворов сополимера нити и пленки, обладающие повышенной прочностью и теплостойкостью. Растпор сополимера в ацетоне используют для нанесения антикоррозионных защитных покрытий.[2, С.517]

При сополимеризации акрилонитрила с винилацетатом получаются волокнообразующие полимеры с лучшей способностью к окрашиванию [550—560].[11, С.363]

При сополимеризации акрилонитрила с поливиниловым спиртом (мол.в.1000) получен блоксополимер. Полимеризация проводится при 20—30° в присутствии инициатора (перекись бен-зоила) и Na2SO4 [619].[11, С.454]

Константы сополимеризации акрилонитрила (rt) с нек-рьши мономерами (г2) [10, С.24]

При изучении сополимеризации акрилонитрила с винилсуль-фокислотой Бреслоу и Хале [762] установили, что сополимери-зация под влиянием ультрафиолетового света как в водном растворе, так и в блоке протекает очень медленно, причем при эквимолекулярном соотношении мономеров получается сополимер, содержащий 20% винилсульфокислоты.[11, С.459]

Рис. 18.3. Схема сополимеризации акрилонитрила в растворителе с одновременным получением прядильного раствора:[4, С.401]

При использовании в качестве сомономера при сополимеризации акрилонитрила в парообразном состоянии (рабочая температура 40°) реакция протекает аналогично. И в этом случае отмечается благоприятное влияние процесса постполимеризации на эффективность прививки (табл. 62 и 63).[7, С.315]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Блаут Е.N. Мономеры, 1951, 241 с.
4. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
5. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
6. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
7. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
8. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
9. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
10. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
11. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
12. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
13. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
14. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
15. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную