На главную

Статья по теме: Технологии переработки

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Анализ технологии переработки полимеров с позиции элементарных стадий и методов формования можно также рассматривать как процесс расчленения сложного механизма на составляющие его части. Такой подход облегчает восприятие всей области переработки и позволяет сформировать единое представление. Однако неизбежным следствием такого подхода является рассредоточение базисных состав -ляющих одного и того же технологического процесса по разным главам книги. Для облегчения задачи поиска описания отдельных элементарных стадий ниже приводится схематическое руководство, позволяющее без особого труда разобраться в наиболее распространенных технологических процессах (рис. 17.1 — 17.8). На этих рисунках указаны разделы, в которых изложен материал, необходимый для понимания и анализа любой части соответствующего технологического процесса.[2, С.609]

В современной технологии переработки полимеров существует тенденция к расширению использования разнообразных наполнителей в композиционных материалах на основе ПВХ. Применение наполнителей позволяет получать материалы с более широким комплексом свойств в сочетании с низкой стоимостью и экономией полимерного сырья [47, 61, 74, 83]. В перспективе прогнозируется опережающий рост производства наполненных ПВХ материалов для электротехнической промышленности, строительных конструкций, машиностроения, транспорта, производства товаров для быта, тары и упаковки.[15, С.193]

Теоретический анализ технологии переработки методов элементарных стадий, позволяющий вскрыть основные физические принципы и механизмы, заложенные в основу каждой элементарной стадии, будет не только способствовать более глубокому и всестороннему пониманию существующих методов переработки, стимулируя дальнейшую работу по созданию способов их математического описания, но также подтолкнет творческую инженерную мысль в направлении разработки улучшенных технологических процессов.[2, С.33]

Первый шаг при таком анализе технологии переработки полимеров состоит в четком определении ее цели. В данном случае целью, несомненно, является формование полимерных изделий. Формованию изделия могут предшествовать манипуляции, посредством которых модифицируются свойства полимера и он подготавливается к стадии формования. Готовые изделия могут подвергаться обработке, улучшающей их внешний вид. Тем не менее основным содержанием технологии переработки полимеров остается формование изделий. Выбор метода формования определяется конфигурацией изделия. В тех случаях, когда можно использовать несколько различных методов, учитываются соображения экономики. Все многообразие методов формования, применяемых в промышленности переработки пластмасс, можно свести к следующим основным группам: 1) калан-дрование и нанесение покрытий; 2) экструзионное формование; 3) формование оболочек на пуансонах и матрицах; 4) формование в пресс-формах литьем под давлением и заливкой; 5) вторичное формование.[2, С.31]

Книга заканчивается рассмотрением ряда способов формования, применяемых в технологии переработки полимеров. И опять каждый из этих методов формования рассматривается независимо от какого-либо конкретного метода переработки. В дополнение к логической классификации методов формования мы рассматриваем влияние переработки на надмолекулярную структуру, обусловленное механической ориентацией макромолекул при переработке, зафиксированной вследствие быстрого охлаждения.[2, С.11]

В. Кайл и Д. Приор в США заявили, что такая машина была ими создана в 1876 г. [13]. Однако датой рождения экструдера, который играет такую существенную роль в современной технологии переработки полимеров, принято считать 1879 г., когда М. Грей запатентовал свою конструкцию в Англии [17]. Этот патент представляет собой первое ясное описание машины такого типа. Экструдер Грея имел также пару обогреваемых валков. Независимо от Грея червячный экструдер был изобретен Ф. Шоу и Д. Ройлом в США в 1880 г.[2, С.13]

Если допустить, что ключевым параметром, определяющим качество ламинарного смешения, является суммарная деформация, то возникает следующая проблема: в большинстве промышленных смесителей и в технологии переработки вообще различные частицы жидкости подвергаются различным деформациям. Это справедливо для смесителей как периодического, так и непрерывного действия. В смесителях первого типа различия в деформировании возникают за счет разницы в величине пути, пройденного частицами жидкости внутри смесителя. В смесителях непрерывного действия кроме разницы в пути, пройденном частицами, важна еще разница во времени пребывания каждой частицы жидкости в смесителе. Для количественного описания различий в деформировании предложены функции распределения деформации [26], подобные классическим функциям[2, С.205]

До сих пор мы рассматривали только сдвиговые течения, обращая особое внимание на установившиеся вискозиметрические течения [40, 44—46]. Причиной этого является простота теоретического рассмотрения этих течений и их превалирующее распространение в технологии переработки полимеров. Тем не менее существует другой класс течений, известных как «продольные течения», или «течения при растяжении», которые также часто встречаются при переработке полимеров. В качестве примера можно привести фильерную вытяжку струи расплава при формовании волокна, одноосную вытяжку плоской струи при получении пленки из плоскощелевой головки экструзионным методом, двухосное растяжение при формовании пленки рукавным методом, многоосное растяжение при формовании изделий методом раздува и, наконец, сходящееся течение в конических каналах уменьшающегося диаметра. Во всех этих примерах упоминаются продольные течения, которые гораздо сложнее течений, используемых для определения реологических характеристик полимеров. В то время как реологи изучают однородные изотермические продольные течения (которые достаточно трудно правильно реализовать в эксперименте), инженерам-переработчикам приходится иметь дело с неоднородными и неизотермическими продольными течениями, поскольку такие течения часто встречаются при формовании на стадии отверждения,[2, С.169]

Мы сконцентрировали внимание на анализе текстуры с позиций оценки степени и интенсивности разделения компонентов. Это не означает, однако, что такой подход к проблеме единственно возможный. Другой, заслуживающий внимания подход связан с анализом распределения частоты изменения концентрации. Этот подход успешно используют в технологии переработки (например, анализ распределения амплитуды колебаний при течении двухфазной жидкости [16]).[2, С.198]

Кроме рассмотренных выше основных технологических процессов существует бесчисленное множество других, менее распространенных процессов. Более того, каждый из основных технологических процессов можно подразделить на большое число очень специфических процессов. Однако обсуждение их не входит в задачи настоящей книги, в которой рассмотрены основные физико-химические принципы, лежащие в основе всех методов переработки. Технические детали индивидуальных технологических процессов, имеющие важное значение для технологии переработки полимеров, освещены в литературе.[2, С.30]

Таким образом, требования, предъявляемые к молекулярному строению высокомолекулярных эластомеров с точки зрения получения резин с наилучшим комплексом физико-механических свойств и в то же время высокотехнологичных, являются достаточно противоречивыми. Именно для разрешения этого противоречия во всех практически реализуемых процессах синтеза кау-чуков необходимо проводить работы по регулированию ММР (или в более общем случае регулированию молекулярного состава) образующихся полимеров с целью их оптимизации. Вопрос о синтезе каучуков с оптимальным молекулярным составом в каждом конкретном случае должен решаться отдельно с учетом существующей технологии переработки и требований, предъявляемых к ос-новным показателям резин.[1, С.93]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
3. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
6. АверкоАнтонович Ю.О. Технология резиновых изделий, 1991, 351 с.
7. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
8. Сагалаев Г.В. Справочник по технологии изделий из пластмасс, 2000, 425 с.
9. Wright P.N. Solid polyurethane elastomers, 1973, 304 с.
10. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
11. Бартенев Г.М. Физика полимеров, 1990, 433 с.
12. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
13. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
14. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
15. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
16. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
17. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
18. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
19. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
20. Северс Э.Т. Реология полимеров, 1966, 199 с.
21. Сотникова Э.Н. Производство уретановых эластомеров в странах Европы и Японии, 1980, 60 с.
22. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
23. Манушин В.И. Целлюлоза, сложные эфиры целлюлозы и пластические массы на их основе, 2002, 107 с.
24. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
25. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
26. Шеин В.С. Основные процессы резинового производства, 1988, 160 с.
27. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
28. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
29. Нестеров А.Е. Справочник по физической химии полимеров Том1, 1984, 375 с.
30. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
31. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
32. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
33. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
34. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.
35. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
36. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
37. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
38. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 4, 1959, 298 с.
39. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
40. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
41. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
42. Лельчук В.А. Поверхностная обработка пластмасс, 1972, 184 с.

На главную