На главную

Статья по теме: Термостойких полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

К числу термостойких полимеров относятся главным образом гетероцепные и гетероциклоцепные ароматические полимеры — полиарилаты, полиамиды, полиимиды, полифениленоксиды, полисульфоны, элементоорганиче-ские полимеры и др. [25, 29, 31, 89, 114—127].[15, С.133]

Большинство термостойких полимеров отличается высокой химической стойкостью: в кислотах и щелочах (полифениленоксид, полисульфон), в органических рас-[15, С.133]

Проблема создания термостойких полимеров — одна из наибо лее важных проблем современной науки. На этом пути достигнуты большие успехи. Весьма термостойкими органическими высокомолекулярными соединениями являются многоядерныс аромзтнчё-ские соединения типа поли-л-фениленов, полнарилаты, полиимидьг[4, С.62]

Проблема создания термостойких полимеров — одна из наиболее важных проблем современной науки. На этом пути достигнуты большие успехи. Весьма термостойкими органическими высокомолекулярным» соединениями являются многоядерные ароматические соединения типа поли-п-фениленов, полиарилаты, полиимиды,[11, С.62]

В настоящее время, когда производство термостойких полимеров представляет одну из наиболее быстро развивающихся областей полимерной химии, необходимо различать понятия «термостойкости» и «теплостойкости» полимеров.[2, С.116]

Преимуществом способа поликонденсации в растворе является возможность проведения реакции при более низкой температуре. Это особенно важно при синтезе термостойких полимеров с высокой температурой плавления (300—400°С). Поликонденсация в растворе проводится обычно при температуре 20—50 °С в присутствии катализаторов и, если необходимо, акцепторов выделяющегося простейшего вещества. При синтезе полиэфиров и полиамидов в этом случае используются не дикарбоновые кислоты, а их хлорангидриды. Большое значение при этом имеет подбор растворителя.[3, С.143]

Преимуществом способа поликонденсации в растворе является возможность проведения реакции при более низкой температуре. Это особенно важно при синтезе термостойких полимеров с высокой температурой плавления (300—400°С). Поликонденсация в растворе проводится обычно при температуре 20—50 °С в присутствии катализаторов и, если необходимо, акцепторов выделяющегося простейшего вещества. При синтезе полиэфиров и полиамидов в этом случае используются не дикарбоновые кислоты, а их хлорангидриды. Большое значение при этом имеет подбор растворителя.[3, С.158]

Сведения, даваемые кривой ТГ, интерпретируют следующим образом. На рис. VII. 14 показаны точки, соответствующие температурам, обычно применяемым для характеристики термостойких полимеров [9]. Это температуры, при которых либо начинается потеря массы (т0), либо достигается определенный уровень этих потерь: 10% (тю), 20% (т20), 30% (т30), 50% (т5о) и т. д.[2, С.118]

В общем случае полимеризация объемных мономеров: стирола, изобутил-винилового эфира и других - в присутствии полисульфокислот, очевидно, может протекать через инициирование в объеме с диффузионными ограничениями или с поверхности. На это указывают невысокие значения молекулярных масс продуктов или эффективности инициирования процесса. Дополнительное сульфирование, фторирование полимерной матрицы, использование термостойких полимеров (сульфо-[12, С.57]

Переработка металлических и керамических порошков путем спекания — это старый, хорошо отработанный технологический процесс. При переработке полимеров плавление со спеканием применяется в таких процессах, как ротационное литье [20, 21 ] и порошковое напыление покрытий изделия. Кроме того, это практически единственный способ переработки политетрафторэтилена, так как высокая молекулярная масса этого полимера служит препятствием для применения других методов [22]. И, наконец, спекание возникает при уплотнении под большим давлением, которое необходимо для плавления и формования термостойких полимеров, таких, как полиимиды и ароматические полиэфиры, и физических смесей других, более традиционных полимеров [23, 24 ].[1, С.279]

С точки зрения создания термостойких полимеров с повышенной теплостой-[8, С.261]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Иванов В.С. Руководство к практическим работам по химии полимеров, 1982, 176 с.
3. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
4. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
5. Горбунов Б.Н. Химия и технология стабилизаторов полимерных материалов, 1981, 368 с.
6. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
7. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
8. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
9. Бартенев Г.М. Физика полимеров, 1990, 433 с.
10. Калинина Л.С. Анализ конденсационных полимеров, 1984, 296 с.
11. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
12. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
13. Пашин Ю.А. Фторопласты, 1978, 233 с.
14. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
15. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
16. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
17. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
18. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
19. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
20. Привалко В.П. Справочник по физической химии полимеров том 2, 1984, 330 с.
21. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
22. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
23. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
24. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
25. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
26. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
27. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
28. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
29. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
30. Почепцов В.С. Химия и технология поликонденсационных полимеров, 1977, 140 с.

На главную