На главную

Статья по теме: Вторичных электронов

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Лучше всего исследована радиотермолюминесценция (РТЛ), стимулированная у-лучами или быстрыми электронами при темп-ре жидкого азота (77 К). При воздействии у-лучей происходит ионизация макромолекул с образованием вторичных электронов. Стабилизация электронов обусловлена захватом их в «ловушках», к-рыми м. б. межмолекулярные полости, представляющие собой ямы в потенциальном поле межмолекулярного взаимодействия, отдельные функциональные группы и макрорадикалы, обладающие положительным сродством к электрону. При нагреве, но мере повышения молекулярной подвижности происходит высвобождение электронов из ловушек и их рекомбинация с ионами. При этом образуются электронно-возбужденные м:олекулы, переход к-рых в основное состояние сопровождается интенсивным свечением, наблюдаемым в области темп-р 100—300 К. Свечение, связанное с др. процессами,— рекомбинацией радикалов, окислением молекулярных продуктов радиолиза и др., на несколько порядков слабее. Часто значительный вклад в РТЛ вносят не[9, С.309]

Лучше всего исследована радиотермолюминесценция (РТЛ), стимулированная -у-лучами или быстрыми электронами при темп-ре жидкого азота (77 К). При воздействии у-лучей происходит ионизация макромолекул с образованием вторичных электронов. Стабилизация электронов обусловлена захватом их в «ловушках», к-рыми м. б. межмолекулярные полости, представляющие собой ямы в потенциальном поле межмолекулярного взаимодействия, отдельные функциональные группы и макрорадикалы, обладающие положительным сродством к электрону. При нагреве, по мере повышения молекулярной подвижности происходит высвобождение электронов из ловушек и их рекомбинация с ионами. При этом образуются электронно-возбужденные молекулы,' переход к-рых в основное состояние сопровождается интенсивным свечением, наблюдаемым в области темп-р 100—300 К. Свечение, связанное с др. процессами,— рекомбинацией радикалов, окислением молекулярных продуктов радиолиза и др., на несколько порядков слабее. Часто значительный вклад в РТЛ вносят не[10, С.309]

Введение в бутадиенстирольный каучук наполнителей — сажи или окиси кремния — приводит к увеличению кажущейся степени сшивания, определяемой по изменению степени набухания и релаксации напряжений [179]. Тонкодисперсные порошки тяжелых металлов, использованные в качестве наполнителей, при облучении обусловливают увеличение числа вторичных электронов, образующихся в каучуке [183]. Добавки, инги-бирующие радиационно-химические процессы, рассмотренные выше, обычно снижают степень радиационного сшивания; в присутствии ароматических масел эти добавки уменьшают также и интенсивность процессов деструкции 1183]. При облучении на воздухе интенсивность процессов деструкции несколько увеличивается, а процессов сшивания — снижается. При облучении нейтронами добавки нитрида бора или метилата лития увеличивают число образующихся поперечных связей за счет дополнительной ионизации по схеме п,а [184]. Бутадиенстирольный каучук в разбавленных растворах в толуоле под действием у-лучей деструк-тируется (Ея = 300 эв) [185]. Эта величина хорошо совпадает с аналогичной величиной при облучении каучука в конденсированной фазе: ЕЛ = Епс/($/а) == 18,5/0,07 = 260 эв, что может являться доказательством незначительного влияния характера окружающей среды на обмен энергии в облучаемом полимере. Желатинизация раствора сополимера в хлороформе при облучении наступает очень быстро и Епс состав-[8, С.182]

Технические возможности позволяют изучать образец в камере РЭМ при различных воздействиях (нагрев, охлаждение, сжатие, ионное травление и др), т.е. в процессе деформации, развития разрушений в полимерах. В частности, при исследовании методом РЭМ растрескивания резин в контролируемых условиях на специальном держателе с изогнутым в сторону электронного луча шаблоном изучают в режиме вторичных электронов растрескивание резинового образца в результате стихийного продвижения в нем трещины (например, при озонном окислении или обработке серной кислотой).[1, С.357]

Кроме фотоэмиссионного катода, они имеют несколько динодов, которые поддерживаются при последовательно возрастающих потенциалах (рис. 10.31). Обычно при переходе от одного динода к следующему разность потенциалов возрастает примерно на 100В. Разность потенциалов обусловливает ускорение электронов настолько, что удар каждого из них о поверхность динода вызывает испускание трех-четырех вторичных электронов. Эти вторичные электроны затем ускоряются при движении к следующему[3, С.177]

В настоящее время мало что известно о свойствах того коллективного возбуждения, которое возникает в шпорах в первый момент после образования трека. Можно лишь утверждать, что за первые 10^14 сек. все процессы протекают при неподвижных ядрах вследствие принципа Франка — Кондона. Такими процессами могут быть миграция и перераспределение в пределах шпоры энергии возбуждения и акты ионизации, приводящие к образованию вторичных электронов с небольшой энергией и катион-радикалов. Чем больше энергия вторичного электрона, тем больше длина его пробега в данной жидкости. Потеряв свою энергию, вторичный электрон в конце своего пробега превращается в тепловой электрон. Таким образом, тепловые электроны возникают на различных расстояниях от материнского катион-радикала, эти расстояния изменяются от десятков до тысяч ангстрем, в отдельных случаях они могут быть и еще больше.[6, С.68]

Линейной потерей энергии (ЛПЭ) называют линейную скорость потери энергии частицей или излучением, проходящим через материал. В первом приближении ЛПЭ может быть вычислена простым делением общей потери энергии частицы на длину ее пути. Такое вычисление, однако, весьма неточно, так как потеря энергии меняется при уменьшении скорости частицы, а энергия ионизирующей частицы не поглощается локально, а передается среде с помощью вторичного излучения. Например, энергия у-излучения и рентгеновского излучения передается в итоге посредством вторичных электронов, которые имеют широкий спектр энергий с разной ЛПЭ. В тех случаях, когда средний потенциал возбуждения известен, можно ЛПЭ вычислить, например, по уравнению (VII. 1) или по другим уравнениям, описывающим иные механизмы потери энергии. Значения ЛПЭ увеличиваются в ряду: у-кванты < электроны высоких энергий < рентгеновское излучение малых энергий < р-частицы < тяжелые частицы. Для электронов, проходящих через полиэтилен, ЛПЭ = (980/?)lg(0,2?) • 10-' эВ/нм, при Е = 0,25 МэВ ЛПЭ = 2- Ю-3 эВ/нм и возрастает до 23- 10~3 эВ/м при Е = 1 кэВ.[2, С.214]

Во-первых, энергия любого излучения передается полимеру главным образом путем ионизации (вырывания электронов с молекулярных орбит) и возбуждения орбитальных электронов. При действии быстрых нейтронов, а частично также и тяжелых заряженных частиц этот эффект является вторичным — ему предшествует выбивание заряженных ядер (например, протонов) в результате неупругих соударений. На ионизацию и возбуждение затрачивается приблизительно одинаковая энергия излучения, и в среднем общая величина энергии, отвечающая образованию одной пары ионов, равна 34,5 эв. Большинство ионных пар образуется под действием вторичных электронов, выбитых со своих орбит и способных ионизировать и возбуждать молекулы, с которыми они сталкиваются, до тех пор, пока не потеряют скорость и не будут захвачены положительно заряженными ионами. Поскольку энергия величиной 1 эв в расчете на одну молекулу соответствует энергии 23,05 ккал/молъ, то очевидно, что при нейтрализации выделяется энергия, достаточная для расщепления многих химических связей. Большинство таких реакций протекает по гемолитическому механизму, и в результате образуются свобод-норадикальные частицы, способные к дальнейшим превращениям.[8, С.97]

Ускоренные ионы, например Ga3+, Be2+, In3+, Sn2+ и др. [63, 64], при прохождении через вещество могут вызвать химические реакции подобно ускоренным электронам. Однако, поскольку рассеяние ионов (с энергией 1—3 МэВ) существенно меньше рассеяния электронов, существует возможность при помощи ионной литографии достигать высоких степеней разрешения [65]. Фокусированный пучок ионов можно сканировать подобно потоку электронов, что может быть использовано для непосредственного образования структур с высокой плотностью элементов в разных полимерных материалах, например в ПММА [63]. Разрешение определяется рассеянием ионов и возникающих вторичных электронов.[2, С.43]

вторичных электронов (на использовании этих электронов основана сканирующая электронная микроскопия), но и рентгеновских лучей. Анализируя характеристические рентгеновские лучи, испускаемые тем или иным участком поверхности, можно определить ее локальный химический состав [278, 279]. В дальнейшем использовали принцип растровых приборов, развертывая электронный зонд по поверхности образца [280—282]. Мгновенная эмиссия рентгеновских лучей из точки соударения электронного луча с образцов анализируется по мере движения зонда по поверхности. В результате можно получить информацию о распределении данного элемента по поверхности. Одновременно можно использовать и вторичные электроны, и на экране другого кинескопа получить изображение структуры поверхности.[5, С.98]

в случае не слишком жестких f-лучей можно наблюдать при помощи методов, являющихся модификацией методов диффрак-ции рентгеновских лучей на кристаллах. Энергии более жестких Тфотонов определяются из энергий вторичных электронов «внутренней конверсии» (см. стр. 24), вырываемых ими с электронных оболочек атомов.[7, С.22]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
2. Беднарж Б.N. Светочувствительные полимерные материалы, 1985, 297 с.
3. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
4. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
5. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
6. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
7. Бовей Ф.N. Действующие ионизирующих излучений на природные и синтетические полимеры, 1959, 296 с.
8. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
9. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
10. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную