На главную

Статья по теме: Упорядоченные микрообласти

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Т. к. упорядоченные микрообласти являются временными образованиями, к-рые с течением времени в одних местах распадаются, а в других возникают, то поведение линейных полимеров различно при коротких и длительных наблюдениях. Напр., при больших скоростях деформации в линейных полимерах обнаруживаются большие высокоэласгич. силы, т. к. за короткое время микрообласти не успевают разрушаться. За время длительных наблюдений, предпринимаемых с целью изучения термодинамических (равновесных) свойств, упорядоченные микрообласти многократно распадаются и возникают. Эта картина в самом грубом приближении воспринимается как неупорядоченная структура. Поэтому структура линейных полимеров в B.C. при длительных наблюдениях воспринимается в среднем по времени как модель хаотически переплетенных цепей.[5, С.284]

Эластомеры имеют в своей структуре неупорядоченные и упорядоченные микрообласти (микрообласти молекулярной структуры). Доля объема, которую занимают эти микроблоки, составляет примерно 20%, следовательно, основная масса эластомера находится в неупорядоченном состоянии (хаотически перепутанные цепи). Эти хаотически перепутанные макромолекулы в отдельных местах могут образовывать друг с •другом физические узлы, связывающие[2, С.28]

Известно, что при температурах, на много превышающих температуру плавления, в расплавах полимеров существуют упорядоченные микрообласти (ближний порядок) [4]. Дальнейшему упорядочению и образованию устойчивых кристаллических зародышей препятствует дезориентирующее влияние теплового движения, уменьшающееся при понижении температуры. Однако при слишком быстром охлаждении процессу кристаллизации, связанному с необходимостью кооперативного перемещения пачек цепных[4, С.191]

Анализ результатов исследования структуры некристаллических линейных полимеров различными структурными методами приводит к выводу, что можно считать доказанным существование упорядоченных микрообластей с примерно параллельной укладкой сегментов макромолекул с плотностью на 1—2% большей, чем остальная неупорядоченная часть полимеров (мицеллярные микроблоки). Могут возникать упорядоченные микрообласти и при складывании цепей, по аналогии с полимерными кристаллитами гибкоцепных полимеров. Эти микрообласти (складчатые структурные микроблО-ки) играют роль предзародышей кристаллизации в полимерах. Третий тип упорядоченных микрообластей — глобулярные микроблоки с неупорядоченной, но более плотной, чем остальная свободная часть полимера, укладкой сегментов. В настоящее время имеются убедительные доказательства существования упорядоченных микрообластей — структурных микроблоков (ассоциатое, или кластеров). Современная электронная микроскопия эластомеров подтверждает существование макрообластей с повышенной на 1—2% плотностью и с линейными размерами 10—30 нм, что соответствует размерам частиц в коллоидных системах. При этом доля объема, занимаемая микрообластями повышенной плотности, составляет для эластомеров примерно 20%. Это значит, что 80% объема занимают свободные цепи и сегменты, ответственные за высокую эластичность этих материалов. Таким образом, можно считать, что эластомеры помимо малых структурных элементов — звеньев, боковых привесков и сегментов макромолекул — состоят из более сложных структурных элементов — структурных микроблоков трех типов.[2, С.126]

В последнее время стал актуальным вопрос: какую роль в термодинамике и статистике равновесной высокоэластической деформации играет надмолекулярная организация? Для ответа на него необходимо напомнить, что в некристаллических эластомерах микроблоки упорядоченной структуры имеют флуктуационное происхождение и, следовательно, характеризуются определенным, конечным временем жизни (см. гл.'I). Так, для каучуков и резин время жизни надмолекулярных образований при 20 °С обычно заключено в интервале 102—104 с, а при повышенных температурах становится намного меньше. Молекулярная подвижность этих флуктуационных структур ответственна за медленный физический релаксационный процесс в эластомерах. Для того, чтобы судить о 'достижении системой равновесного состояния, время наблюдения за свойствами эластомера должно превышать время жизни упорядоченных микроблоков. По этой причине для описания свойств равновесного состояния оказывается пригодной модель хаотически переплетенных цепей без прямого учета надмолекулярных структур флуктуационной природы. В то же время, при изучении равновесных состояний частично закристаллизованных эластомеров следует учитывать надмолекулярные структуры, так как в этом случае кристаллические упорядоченные микрообласти суть термодинамически стабильные структуры. Аналогично, существенен учет в наполненных резинах других стабильных структурных единиц — частиц активного наполнителя. В этой главе в соответствии с произведенной «отбраковкой» в основном рассматриваются термодинамические свойства ненаполненных и незакристаллизованных эластомеров, так как природа высокоэластической деформации более сложных структур остается той же, но расчет высокоэластических напряжений сильно усложняется.[1, С.106]

Высокоэластическая деформация эластомеров при малых Р объясняется ориентацией свободных сегментов, не входящих в упорядоченные микрообласти, так как последние ведут себя подобно[2, С.169]

Т. к. упорндоченные микрообласти являются временными образованиями, к-рые с течением времени в одних местах распадаются, а в других возникают, то поведение линейных полимеров различно при коротких и длительных наблюдениях. Напр., при больших скоростях деформации в линейных полимерах обнаруживаются большие высокоэластич. силы, т. к. на короткое время микрообласти не успевают разрушаться. За время длительных наблюдений, предпринимаемых с целью изучения термодинамических (равновесных) свойств, упорядоченные микрообласти многократно распадаются и возникают. Эта картина в самом грубом приближении воспринимается как неупорядоченная структура. Поэтому структура линейных полимеров в В. с. при длительных наблюдениях воспринимается в среднем по времени как модель хаотически переплетенных цепей.[6, С.281]

вого движения и напряжения. Возникают лишь временные упорядоченные микрообласти флуктуационной природы (структурные микроблоки), которые по своей природе напоминают области ближнего порядка в жидкостях, но характеризуются большей устойчивостью и упорядоченностью. В целом структуру полимеров можно представить в виде двух частей: одна часть состоит из свободных сегментов, тепловое движение которых квазинезависимо, а другая представляет собой распределенную по всему объему молекулярно-упорядоченную структуру, состоящую из связанных между собой упорядоченных микрообластей. При изменении Т и Р происходит перераспределение числа сегментов между упорядоченной и неупорядоченной частями полимера. 6.3.1. Молекулярный механизм вязкого течения полимеров[2, С.165]

расплава установлено, что при температурах, намного превышающих температуру плавления, в расплавах полимеров существуют упорядоченные микрообласти (так называемый ближний порядок). Однако дальнейшему упорядочению и образованию устойчивых кристаллических зародышей препятствует дезориентирующее влияние интенсивного теплового движения. При понижении температуры дезориентирующее влияние теплового движения уменьшается. Однако при слишком быстром охлаждении процесс кристаллизации, связанный с необходимостью кооперативного перемещения пачек цепных молекул, наталкивается на препятствие; это препятствие — быстро возрастающая вязкость. Поэтому при быстром охлаждении структура кристаллических полимеров в блоке (например, полиэтилена) оказывается преимущественно ламелярной. Дальнейшая укладка образующихся ламелей в сферолиты проходить не успевает.[3, С.157]

щих в микроблоки, а другая (упорядоченная) состоит из связанных сегментов и представляет собой распределенные по всему объему упорядоченные микрообласти (структурные микроблоки) различного типа. Последние играют роль физических узлов молекулярной сетки и характеризуются относительно большими временами жизни. Различные типы микроблоков характеризуются соответственно различными временами жизни TJ. При изменении температуры и напряжения происходит перераспределение числа сегментов между упорядоченной и неупорядоченной частями полимера.[2, С.127]

свойствами сшитого эластомера в течение времени, большего времени жизни физических узлов сетки. В результате для свойств равновесного состояния можно применять модель хаотически переплетенных цепей без прямого учета надмолекулярных структур флуктуационной природы. В то же время для изучения равновесных состояний частично закристаллизованных эластомеров роль надмолекулярных структур существенна, так как в этом случае кристаллические упорядоченные микрообласти являются термодинамически стабильными структурами.[2, С.61]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
4. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
5. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
6. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную