На главную

Статья по теме: Эластическими свойствами

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Из исследованных каучуков лучшими эластическими свойствами в широком интервале температур обладает полимер, полученный из политетрагидрофурана молекулярной массы 1000. Для этого состава изучалось влияние полидисперсности полимердиола на свойства каучука и его вулканизатов. Естественно, что более высокий уровень эластичности имеют полимеры, содержащие значительное количество высокомолекулярных фракций. В области положительных температур- эластичность по отскоку является функцией полидисперсности полиэфира (рис. 2). Падение эластичности полимеров с увеличением коэффициента полидисперсности объясняется увеличивающейся нерегулярностью в распределении уретановых групп по цепи. Для полимеров, полученных на основе механической смеси каучуков, на температурной зависимости эластичности по отскоку появляются характерные для блокполимеров две области переходов. Нерегулярность физических узлов и химических поперечных связей при значениях[1, С.540]

В том случае, когда материал обладает выраженными эластическими свойствами, наблюдается его проскальзывание, особенно сильное для жестких смесей. При этом смешение прекращается. Резкие частотные колебания мощности при работе закрытого смесителя связаны, вероятно, именно с этим скольжением, а также с 'непрерывным изменением эффективного зазора и объема смеси между стенкой камеры и кромкой лопасти и несовпадением по фазам расположения лопастей вдоль оси роторов.[9, С.136]

В СССР и за рубежом выпускается широкий ассортимент БНК. Марки каучука различаются содержанием акрилонитрила, пласто-эластическими свойствами, температурой полимеризации (5 и 30 °С), типом антиоксиданта, выпускной формой. Каучуки делятся на группы с очень высоким (42—53%), высоким (35—41%), средневысоким (31—34%), средним (24—30%) и низким (17—23%) содержанием акрилонитрила. В СССР выпускаются БНК всех перечисленных групп.[1, С.361]

Особенности технологического процесса сборки металлокорд-ных шин определяются физико-химическими (адгезионными) и упруго-эластическими свойствами металлокордного слоя, обусловившими введение в бортовую часть покрышки колец сложной конфигурации (соединяемых в процессе сборки с различными профилированными резиновыми деталями и бортовыми металлокордными лентами).[7, С.208]

Из рис. 210 следует также, что смесь, приготовленная на основе поливинилхлорида и бутадиен-питрильного каучука, содержащего 49,8% нитрильных групп (сополимер 5), обладает хорошими эластическими свойствами. В данном случае сополимер 5 является лучшим пластификатором по отношению к поливинилхлориду. Аналогичное действие оказывают бутадиен-гштрильгше каучукп на нитрат целлюлозы. Наилучшие показатели у смеси гштрата целлюлозы с каучуком^ содержащим 36% акрилонитрила. Сопротивление разрыву смеси нитрата целлюлозы с таким сополимером равно 4,89 кГ1см* (прочность нитрата целлюлозы — 6,6яГ/слг2), а относительное удлинение при разрыве составляет около 100% (2,5% дли нитрата целлюлозы). Смесь нитрата целлюлозы с дибутил-фталатом имеет такое же относительное удлинение при разрыве и разрывную прочность 0,2 кГ/см2^ Из этих данных сдедует! что пластификация одних полимеров другими в ряде случаев может оказаться более эффективной, чем пластификация низ ко молекулярными жидкостями. При этом необходимо учитывать полярность смешиваемых полимеров. Сополимеры, содержащие слишком много полярных ['р^пи, не обладают большой эластичностью И( очевидно, пе могут повысит!, эластичность второго жесткого полярного полимера. Сополимеры с малым содержанием полярных групп образуют с ним неоднородные смеси, обладающие- очень плохими физико-механическими показателями. По-видимому, неоднородность и вызванные ею плохие физико-механические показатели смеси являются следствием несовместимости полимеров. Нитрат целлюлозы не совмещается с полибутадиеном, последний не совмещается с поливипилхлоридом. Эти два полярных полимера не совмещаются с сополимерами, содержащими мало иитрильпых групп.[4, С.457]

Из рис. 210 следует также, что смесь, приготовленная на основе поливинилхлорида и бутадиен-питрильного каучука, содержащего 49,8% питрильпых групп (сополимер 5), обладает хорошими эластическими свойствами. В данном случае сополимер 5 является лучшим пластификатором по отношению к поливинилхлориду. Аналогичное действие оказывают бутадиеп-питрильгше каучукп на нитрат целлюлозы. Наилучшие показатели у смеси нитрата цел-люлозы с каучуком, содержащим 36% акрилонитрила. Сопротивление разрыву смеси нитрата целлюлозы с таким сополимером равно 4,89;.Т/сл12 (прочность цитрата целлюлозы — 6,6 кГ/см2'), а относительное удлинение при разрыве составляет около 100% (2,5% для нитрата целлюлозы). Смесь нитрата целлюлозы с дибутил-фталатом имеет такое же относительное удлинение при разрыве и разрывную прочность 0,2 кГ/cju2. Из этих данных следует, что пластификация одних полимеров другими в ряде случаев может оказаться более эффективной, чем пластификация низкомолекулярными жидкостями. При этом необходимо учитывать полярность смешиваемых полимеров. Сополимеры, содержащие слишком много полярных I'pjnn, не обладают большой эластичностью и( очевидно, пе могут повысит!, эластичность второго жесткого полярного полимера. Сополимеры с малым содержанием полярных групп образуют с ним неоднородные смеси, обладающие очень плохими физико-механическими показателями. По-видимому, неоднородность и вызванные ею плохие физико-механические показатели смеси являются следствием несовместимости полимеров. Нитрат целлюлозы Не совмещается с полибутадиеном, последний не совмещается с поливиггилхлоридом. Эти два полярных полимера не совмещаются с сополимерами, содержащими мало нитрильпых rpvnn.[10, С.457]

Вискоза и в этом случае характеризуется слабо выраженными эластическими свойствами даже по сравнению с медноаммиачным раствором целлюлозы и раствором КМЦ, хотя они получены из одного и того же полимера. Поэтому можно полагать, что упругие свойства вискоз связаны не только с собственной жесткостью[12, С.125]

Гидролизовапный ацетат целлюлозы, содержащий до 56% связанной уксусной кислоты, растворяется значительно лучше. Практическое значение имеет его растворимость в ацетоне. Он обладает лучшими эластическими свойствами, чем триацетат целлюлозы, но уступает последнему по механической прочности и водостойкости.[2, С.102]

Приведенный экспериментальный материал свидетельствует о том, что, изменяя структуру полимера, можно одновременно увеличить его прочность и способность к высокоэластической деформации. Кристаллические полимеры могут обладать очень хорошими эластическими свойствами, например удлинение при разрыве полипропилена может достигать 900% при прочности 370 кГ/см*. Потеря эластичности, т. е. хрупкость кристаллических полимеров, в первую очередь связана не с изменением степени кристалличности, а с возникновением больших, хорошо сформированных сферолитов. Появление трещин и разлом образца происходят на границах их раздела. Увеличение размера сферолитов приводит к повышению хрупкости и снижению прочности.[4, С.234]

При больших вязкостях вискоз и высоких скоростях истечения наблюдается образование спиралевидных скрученных струй. Типичный пример такой струи приведен на рис. 7.14. Это явление хорошо изучено при течении расплавов полимеров [23] и получило название «эластической турбулентности» [24], так как оно связано с эластическими свойствами жидкостей. Причиной эластической турбулентности является периодическое проскальзывание[12, С.176]

Для высокопрочной нити характерны мелкокристаллическая структура и высокая степень ориентации элементов структуры вдоль оси волокна. Кроме того, сверхпрочная вискозная нить меньше набухает в воде (170—180 вместо 250%) и меньше теряет прочность в мокром состоянии (29 вместо 55%), характеризуется более низкой потерей прочности при кручении, высокими эластическими свойствами и лучшими показателями усталостной прочности.-[11, С.174]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кузнецов Е.В. Альбом технологических схем производства полимеров и пластических масс на их основе, 1976, 108 с.
3. Белозеров Н.В. Технология резины, 1967, 660 с.
4. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
5. Сёренсон У.N. Препаративные методы химии полимеров, 1963, 401 с.
6. Амброж И.N. Полипропилен, 1967, 317 с.
7. Андрашников Б.И. Интенсификация процессов приготовления и переработки резиновых смесей, 1986, 225 с.
8. Башкатов Т.В. Технология синтетических каучуков, 1987, 359 с.
9. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
10. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
11. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
12. Серков А.Т. Вискозные волокна, 1980, 295 с.
13. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
14. Виноградов Г.В. Реология полимеров, 1977, 440 с.
15. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
16. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
17. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
18. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
19. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
20. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
21. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.
22. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
23. Фишер Э.N. Экструзия пластических масс, 1970, 288 с.

На главную