На главную

Статья по теме: Электронно микроскопическом

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Существенные отличия модифицированного полиизопрена, сближающие его с натуральным каучуком, обнаружены при электронно-микроскопическом исследовании изменения морфологии полиизопренов [27] в условиях неускоренной серной вулканизации ненаполненных смесей. В системе СКИ-3 — сера при вулканизации лишь после 8 ч прогрева образуются глобулы, в то время как для систем НК и СКИ-ЗМ с серой характерным является исходное состояние с глобулярными структурами и в ходе вулканизации происходит увеличение размера глобул.[1, С.235]

Согласно динамической теории дифракционного контраста [112-114], толщинные контуры экстинкции являются контурами одинаковой глубины в тонкой фольге и появляются на электронно-микроскопическом изображении, когда некоторое семейство плоскостей данного зерна находится в брэгговских условиях отражения. В работах [115, 116] проанализирована физическая природа уширения толщинных контуров экстинции на электронно-микроскопических изображениях границ зерен в наноструктурных материалах и показано, что оно связано с высоким уровнем внутренних напряжений и искажений кристаллической решетки вблизи границ зерен в образцах, подвергнутых ИПД. На основе этого анализа предложена методика определения величины упругих деформаций в зависимости от расстояния до границы зерна.[2, С.62]

Несколько лет назад 3. Я. Берестнева и В. А. Картин14 проделали очень убедительные эксперименты по электро-нографическому и электронно-микроскопическому исследованию процессов получения типичных лиофобных коллоидов. Было показано, что образованию кристаллических коллоидных частиц всегда предшествует выделение глобулярных и пленочных аморфных структур. Эти эксперименты могут быть истолкованы как доказательство того, что указанные системы, подчиняясь правилу фаз и соответственно законам равновесия смесей аморфных веществ (жидкостей), в определенных условиях распадаются на равновесные фазы, в которых лишь после этого совершается процесс дальнейшего превращения в кристаллические осадки. Подобное представление о механизме образования коллоидных золей может быть распространено15 и на случаи образования гелеобразных коллоидных систем из неорганических веществ.[5, С.23]

Для многих студнеобразных систем, у которых процесс образования двухфазных структур останавливается на этой стадии, в электронном микроскопе без специального оттенения или «травления» объекта гетерогенная структура не выявляется. Это обусловлено та,кже малым различием электронных плотностей двух сосуществующих фаз и трудностью получения очень тонких образцов для электронно-микроскопического исследования В самом деле, если размеры микроучастков гетерогенной системы лежат в пределах двух-трех десятков ангстрем, а толщина застудневшей пленки равна нескольким сотням ангстрем, то интегральная картина в электронном микроскопе не будет содержать деталей структуры. Подобное явление происходит при застудневании растворов диацетата целлюлозы в бензиловом спирте (классический пример полимерных студней): отчетливой гетерогенной структуры при электронно-микроскопическом исследовании студней не обнаруживается,[5, С.179]

Третий пример, демонстрирующий еще одну разновидность студнеобразования (рис. 82, см. вклейку в конце книги), — система ацетат целлюлозы — ацетон — вода, На электронно-микроскопическом снимке отчетливо прослеживается непрерывный каркас, состоящий из второй фазы, но синеретические процессы протекают менее интенсивно, чем в других предыдущих случаях.[5, С.180]

В массе пигмента присутствуют частицы разной величины. Распределение частиц по размерам можно представить кривой распределения. Широта распределения частиц определенных размеров играет существенную роль в диспергируемости пигмента. В общем случае частицы с меньшей удельной поверхностью, т. е. крупные пигментные агломераты, легче измельчаются, чем мелкие агломераты с большой удельной поверхностью. Другими словами, масса пигмента всегда состоит из легко- и труднодиспергируемых частиц, и путем дополнительной обработки пигмента, воздействуя на распределение частиц, можно улучшить его дисперги-руемость. Величины удельной поверхности, полученные с использованием разных методик, не всегда совпадают с данными о распределении частиц, полученными из расчетов по электронно-микроскопическому снимку, как и вообще не существует абсолютного критерия качества диспергирования. Так, приводимые здесь данные для одного и того же пигмента и для двух различных пигментов неодинакового химического состава по их удельной поверхности или распределению частиц дают ограниченную или вообще неправильную информацию.[6, С.174]

Одним из приемов выявления гетерогенности поверхности при электронно-микроскопическом исследовании является декорирование. Сущность этого приема заключается в том, что на поверхность наносится вещество, способное концентрироваться на некоторых деталях поверхности, например дефектах, делая их видимыми. При этом наблюдаются не сами дефекты, а частицы декорирующего вещества. Таким способом еще в 1947 г. с помощью капелек росы удалось наблюдать сложнейший рисунок поверхности зеркально-гладкой грани карбида кремния и других кристаллов [288—290]. Для получения более стабильных образцов быстро испаряющаяся вода была заменена конденсатом хлорида аммония [288—290]. Однако наибольшее распространение получила предложенная Бессетом техника декорирования путем вакуумного распыления некоторых металлов (золота, платины) [291—297]. Метод декорирования поверхности напылением металла в вакууме позволяет не только наблюдать некоторые особенности строения поверхности, но и изучать динамику изменения поверхности при нагревании, под действием влаги и других факторов [243]. На рис. III.4 (см. вклейку) в качестве примера, иллюстрирующего возможности метода декорирования, приведен снимок поверхности скола минерала галита.[7, С.98]

Убедительно доказывает возможность разрыва по межфазной поверхности метод реплик, применяемый при электронно-микроскопическом исследовании поверхности. В основе этого метода лежит предположение о том, что отделение реплики от субстрата происходит по границе раздела, т. е. чисто адгезионно. Это предположение неоднократно проверялось. Было обнаружено, что размеры микрофибрилл, получаемых при измельчении волокон, измеренные электронно-микроскопическим методом на просвет, совпадают с размерами, полученными методом реплик, снятых с поверхности волокон [10]. Размеры кристаллов полимеров, например толщина слоев в пластинчатых кристаллах, измеренные рентгенографически и методом реплик, совпадают [11—13]. При отсутствии адгезионного разрушения такие совпадения вряд ли могли бы быть. Адгезионное разрушение различных систем адгезив — субстрат неоднократно описано [7; 8; 9, с. 123; 14—19]. Разумеется, утверждать, что на поверхности субстрата (или наоборот) после разрушения системы адгезив — субстрат отсутствуют следы адгезива, вряд ли возможно, поскольку точность современных методов оценки характера разрушения ограничена. Возможно, на поверхности субстрата, особенно в неровностях и углублениях, и остаются мельчайшие, не фиксируемые экспериментально следы адгезива. На этом основании формально можно сделать вывод об отсутствии чисто адгезионного разрушения [2]. Разумеется, серьезно оспаривать подобные утверждения нецелесообразно. К вопросу о характере разрушения адгезионных соединений мы будем неоднократно возвращаться. Здесь уместно отметить одну из причин чисто адгезионного разрушения систем адгезив — субстрат. Дело в том, что межфазная поверхность в гетерогенной системе наиболее ослаблена из-за концентрации механических напряжений. Поэтому при отсутствии достаточно прочных молекулярных связей на границе раздела адгезив — суб-[7, С.162]

Среди оптических методов изучения характера разрушения адгезионных соединений важное место принадлежит электронно-микроскопическому. Изучение реплик с поверхности субстрата дает возможность обнаружить присутствие следов адгезива [143, 145, 149, 155]. Так удалось показать, что при ударных испытаниях склеенных адгезивами на основе различных смол (эпоксидной, фенольной) стальных поверхностей разрыв имеет в основном адгезионный характер. Большая часть поверхности стали оказывается чистой, лишь кое-где разбросаны обрывки адгезива [148].[7, С.232]

Переходный слой обнаруживается и при прямом электронно-микроскопическом исследовании границы раздела полимер — полимер [70]. В этом случае надо только учесть, что толщина слоя не может, видимо, оставаться неизменной при значительном уменьшении размеров частиц фазы диспергированного полимера. Благодаря развитой надмолекулярной структуре в полимерах существует микрогетерогенность (при наличии однофазности), так что на поверхности контакта двух полимеров сегментальное растворение может осуществляться локально, в местах с наименьшим ближним порядком [97]. В микрочастице диспергированного полимера, диаметр которой соизмерим с размером области ближнего порядка, толщина переходного слоя может резко отличаться от таковой на плоской поверхности. Сообщается, что при достаточном уменьшении размера частиц диспергированного полимера его Tg изменяется [113], что можно объяснить сближением размеров частицы и толщины переходного слоя.[8, С.32]

Рядом работ, посвященных электронно-микроскопическому исследованию структуры аморфных полимеров [1], было установлено, что они оказываются хорошо упорядоченными системами и ближний порядок в ряде полимеров может быть выражен настолько хорошо, что в результате образуются структуры, имеющие правильную геометрическую форму. На основании изучения целого ряда объектов было показано, что структурными элементами в твердых аморфных полимерах являются глобулы и фибриллярные образования, названные авторами пачками цепей. Оставалось неясным, какое изменение происходит со структурными элементами аморфных полимеров при увеличении гибкости молекулярных цепей — при переходе к эластомерам и, вообще, существуют ли в эластомерах какие-либо упорядоченные структуры. Вместе с тем, известно, что в низкомолекулярных жидкостях с асимметричными частицами в результате флуктуации существуют упорядоченные области; кроме того, в натуральном каучуке при его растяжении легко протекает процесс кристаллизации. Поэтому естественно предположить, что и в каучуках, находящихся в аморфном состоянии, должны существовать упорядоченные области.[9, С.137]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
3. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
4. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
5. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
6. Парамонкова Т.В. Крашение пластмасс, 1980, 320 с.
7. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
8. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
9. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
10. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
11. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
12. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.

На главную