На главную

Статья по теме: Аморфного стеклообразного

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Релаксационные свойства стеклообразных полимеров накладывают характерный отпечаток на их деформационные характеристики. Стеклование наступает, когда энергия теплового движения элементов структуры полимера уже неспособна преодолеть силы взаимодействия между участками макромолекул. Благодаря свернутой конформации макромолекул аморфных полимеров при уменьшении подвижности их звеньев и сегментов неизбежно сохраняется рыхлость их упаковки после стеклования и эта рыхлость тем больше, чем меньше гибкость макромолекулы. Рыхлостью обусловлены различия во взаимодействиях между участками макромолекул: в областях пустот они сильно снижены. Поэтому при медленном деформировании аморфного стеклообразного полимера будут преодолеваться силы, действующие между близко соприкасающимися друг с другом участками макромолекул, а сами макромолекулы начнут распрямляться при действии растягивающего усилия. Это распрямление обусловлено существованием сегментов с пониженным взаимодействием друг с другом и возможностью преодоления этого взаимодействия за счет теплового движения при низких температурах. Таким образом, на кривой нагрузка — удлинение аморфного стеклообразного полимера должен существовать участок развития сравнительно большой деформации за счет выпрямления свернутых макромолекул. Это и наблюдается на опыте (рис. 53).[3, С.110]

Как видно из рис. 53, существуют три характерных области на кривой деформации аморфного стеклообразного полимера. Первая область (/) характеризуется пропорциональной зависимостью между напряжением и удлинением, причем угол наклона к оси абсцисс[3, С.110]

В гидратцеллюяозе, у которой по сравнению с природной целлюлозой значительно больше содержание аморфной части, последняя, как показали исследования Папкова с сотрудниками, имеет разнородную структуру, зависящую от влажности целлюлозы. В сухом состоянии аморфные участки гидратцеллюлозы находятся в стеклообразном состоянии (изотропном). Повышение влажности приводит к некоторому самоупорядочению макромолекул. При абсолютной влажности примерно 14% устанавливается равновесие двух состояний: анизотропного мезоморфного (жидкокристаллического) и изотропного аморфного (стеклообразного). Переход в мезоморфное (мезофаз-ное) состояние в этих условиях не может быть полным из-за ограниченной подвижности цепей целлюлозы, входящих как в аморфные, так и в кристаллические области. Когда влажность целлюлозы достигает примерно 30%, аморфная часть снова становится однородной, т.е. изотропной, но она при этом переходит полностью в высокоэластическое состояние.[1, С.245]

Рис. 53. Кривая растяжения аморфного стеклообразного полимера; 0в.э — предел вынужденной[3, С.111]

Если область // кривой а—е аморфного стеклообразного полимера обусловлена проявлением эластичности, имеющей релаксационную природу, то на ее величину и само существование должны оказывать сильное влияние температурный и временной факторы. Действительно, при понижении температуры величина предела вынужденной эластичности увеличивается, а область ее сокращается вплоть до полного исчезнования, когда разрушение образца наступает до достижения предела вынужденной эластичности (рис. 54). При понижении температуры тепловая энергия сегментов снижается и не может преодолеть силы межмолекулярного взаимодействия, что необходимо для развития высокоэластической деформации. Поэтому предел вынужденной эластичности возрастает. Температура, при которой разрывное напряжение (т. е. разрушение образца) совпадает с пределом вынужденной эластичности, называется температурой хрупкости (li на рис. 54). Ниже этой температуры (4) вы-нужденноэластические деформации не развиваются, и полимер находится только в хрупком состоянии. Его разрушение происходит по механизму хрупкого разрыва (см. гл. VIII).[3, С.112]

Релаксационные свойства стеклообразных полимеров накладывают характерный отпечаток на их деформационные характеристики. Стеклование наступает, когда энергия теплового движения элементов структуры полимера уже неспособна преодолеть силы взаимодействия между участками макромолекул. Благодаря свернутой копформации макромолекул аморфных полимеров при уменьшении подвижности их звеньев и сегментов неизбежно сохраняется рыхлость их упаковки после стеклования и эта рыхлость тем больше, чем меньше гибкость макромолекулы. Рыхлостью обусловлены различия во взаимодействиях между участками макромолекул: в областях пустот они сильно снижены. Поэтому при медленном деформировании аморфного стеклообразного полимера будут преодолеваться силы, действующие между близко соприкасающимися друг с другом участками макромолекул, а сами макромолекулы начнут распрямляться при действии растягивающего усилия. Это распрямление обусловлено существованием сегментов с пониженным взаимодействием друг с другом и возможностью преодоления этого взаимодействия за счет теплового движения при низких температурах. Таким образом, на кривой нагрузка — удлинение аморфного стеклообразного полимера должен существовать участок развития сравнительно большой деформации за счет выпрямления свернутых макромолекул. Это и наблюдается на опыте (рис. 53).[5, С.110]

Рис. 53. Кривая растяжения аморфного стеклообразного полимера; 0в.э — предел вынужденной[5, С.111]

Если область // кривой а—е аморфного стеклообразного полимера обусловлена проявлением эластичности, имеющей релаксационную природу, то на ее величину и само существование должны оказывать сильное влияние температурный и временной факторы. Действительно, при понижении температуры величина предела вынужденной эластичности увеличивается, а область ее сокращается вплоть до полного исчезнования, когда разрушение образца наступает до достижения предела вынужденной эластичности (рис. 54). При понижении температуры тепловая энергия сегментов снижается и не может преодолеть силы межмолекулярного взаимодействия, что необходимо для развития высокоэластической деформации. Поэтому предел вынужденной эластичности возрастает. Температура, при которой разрывное напряжение (т. е. разрушение образца) совпадает с пределом вынужденной эластичности, называется температурой хрупкости (/4 на рис. 54). Ниже этой температуры (4) вы-нужденноэластические деформации не развиваются, и полимер находится только в хрупком состоянии. Его разрушение происходит по механизму хрупкого разрыва (см. гл. VIII).[5, С.112]

Рис. 55. Изменение формы образца аморфного стеклообразного полимера при его растяжении: а — исходный образец до деформирования, б — появление шейки, в — рост шейки и переход в нее всего деформированного участка образца, г — образец после разрыва[3, С.113]

Рис. 55. Изменение формы образца аморфного стеклообразного полимера при его растяжении:[5, С.113]

Рис 1. Типичная диаграмма растяжения полимера а — аморфного стеклообразного, б — кристаллического.[6, С.282]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
2. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
3. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
4. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
5. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
6. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную