На главную

Статья по теме: Деформаций растяжения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Наряду с испытаниями на озонное растрескивание при статических деформациях для практики существенное значение имеет поведение резин в динамических условиях. Испытывать образцы целесообразно при несимметричном цикле нагружения, т. е. при постоянной статической деформации, на которую накладывается дополнительная периодическая. Испытания при многократных деформациях в озонированном воздухе рекомендуется проводить при одновременном действии деформаций растяжения: статической 10-50 % и динамической с амплитудой колебания 10-30 % при частоте 10 цикл/мин.[2, С.133]

Релаксационные процессы в полимерах определяют их вязко-упругие свойства и влияют на прочностные свойства этих материалов. Влияние релаксационных процессов на разрушение полимеров в высокоэластическом состоянии более существенно, чем в твердом [63]. В связи с этим понять природу процессов разрушения эластомеров и физический смысл наблюдаемых закономерностей можно на пути выяснения прежде всего фундаментального вопроса о взаимосвязи релаксационных процессов с процессом разрушения. Решение этого вопроса было осуществлено в работах [12.17; 12.19], где проведены широкие исследования температурной зависимости комплекса характеристик: релаксации напряжения, вязкости, процессов разрушения (долговечности и разрывного напряжения). Для исследований были выбраны несшитые и сшитые неполярные эластомеры: бутадиен-стирольный СКС-30 (Тс = —58° С) и бутадиен-метилстирольный СК.МС-10 (Тй=—72°С), а также полярные бутадиен-нитрильные эластомеры. Условия опытов охватывали широкий диапазон напряжений и деформаций растяжения и сдвига (несколько порядков величины). Исследования физических свойств проводились для каждого эластомера на образцах, полученных при одних и тех же технических режимах приготовления образцов (переработка и вулканизация).[3, С.341]

В основе механической пластикации лежит деструкция цепных молекул каучука вследствие многократных деформаций растяжения, сдвига и кручения при обработке на оборудовании и действия кислорода воздуха активность которого возрастает с повышением температуры процесса.[7, С.12]

Кристаллизация при растяжении имеет большое значение дчя полимеров, которые при эксплуатации подвергаются действию многократных деформаций растяжения — сжатия, поскольку она определяет такие важные свойства, как прочность, хпругость .и гистерезис (см. гл. 5).[4, С.276]

В процессе эксплуатации ряд резиновых изделий (шины, транспортерные ленты, ремни, виброизоляторы и др.) работают в условиях многократных деформаций растяжения, сжатия, изгиба, сдвига и кручения. Происходящие при этом в резине изменения сложны и полностью не изучены. Исследования показали, что при динамических нагружениях, выражающихся в быстрых переменных деформациях или напряжениях, в материале возникают сложные физические и химические процессы, в результате которых ухудшаются эксплуатационные свойства изделий и образуются очаги разрушений.[7, С.135]

Влияние величины деформации на морозостойкость изучается при деформациях сжатия и растяжения (ГОСТ 408-78. Резина. Методы определения морозостойкости при растяжении). В области малых деформаций растяжения с возрастанием деформации коэффициент морозостойкости возрастает; наиболее отчетливо это проявляется для резин, наполненных техническим углеродом, структура которого разрушается при небольших деформациях. Экстремальный характер зависимости для ненаполненных резин связан с ориентацией и кристаллизацией цепей при растяжении, а также с разрушением и перестройкой их структуры под действием больших напряжений. Вследствие существенного влияния величины деформации на коэффициент морозостойкости следует проводить испытания при деформациях, близких к реальным для изделий значениям. Кроме того, необходимо учитывать, что все используемые методы определения морозостойкости не пригодны для оценки эксплуатационных свойств РТИ, которые определяются помимо морозостойкости резины еще и конструкцией и формой детали, режимами и условиями ее эксплуатации.[6, С.548]

Таким образом, тензор деформаций растяжения в отличие от тензора напряжений не является одноосным. В теории упругости вводят следующие обозначения [25]:[8, С.16]

Для проведения испытаний рекомендуется ряд динамических деформаций растяжения: 50, 75, 100, 125, 150, 200 и 250 % и статических деформаций растяжения: 20, 40, 60, 80, 100 и 120 %.[7, С.142]

Приготовление резиновых смесей — один из основных и ответственнейших технологических процессов производства резиновых изделий. Сущность процесса заключается в равномерном распределении порошкообразных, твердых и жидких ингредиентов в каучуке и получении резиновой смеси, однородной по составу, технологическим свойствам и физико-механическим показателям в результате многократных деформаций растяжения, сжатия, сдвига и кручения многокомпонентной системы, возникающих в процессе смешения.[7, С.23]

На Ефремовском заводе СК [128] еще в 1983 году была предпринята попытка получить в лабораторных условиях олигоме-ры пиперилена из неочищенной пипериленовой фракции кубового продукта производства изопрена. Среднечисленная молекулярная масса олигомера находилась в пределах 300-500. Данный олигомер был исследован в качестве модификатора вулка-низатов бутадиеновых каучуков СКД и СКД-СР. Выяснилось, что олигомер пиперилена практически не уступает мягчителю ПН-6 по влиянию на пластичность, несколько уменьшилась усадка при вальцевании. Возросло сопротивление раздиру, хотя и не столь значительно как в случае протекторной резины автопокрышки 165/70Р-13. Наблюдалось аналогичное увеличение стойкости к действию многократных деформаций растяжения. По-видимому, в обоих случаях олигопиперилен приводит к лучшему распределению ингредиентов при приготовлении резиновых смесей.[9, С.147]

Фактическое распределение деформаций растяжения по сечению уже отрелаксировавшего экструдата определяется соотноше-[12, С.105]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
5. Рагулин В.В. Технология шинного производства Изд.3 1981г, 1981, 263 с.
6. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
7. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
8. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
9. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
10. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
11. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
12. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
13. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
14. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
15. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную