На главную

Статья по теме: Химических превращениях

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

При химических превращениях каучука, например при реакциях присоединения, не все двойные связи принимают одновременное и одинаково активное участие в реакции. Чаще всего реакции не доходят до конца. Двойные связи в разных структурных звеньях молекулы принимают в этих реакциях неравноценное участие. Двойные связи в боковых ветвях молекулы отличаются по своей активности от двойных связей в основной молекулярной цепи. Течение реакций бывает затруднено тем, что они часто протекают между твердым каучуком и жидкими или газообразными нерастворимыми в нем реагентами, т. е. имеют характер гетерогенных реакций. Значительно легче реакции протекают в растворах каучуков, особенно в разбавленных растворах, в которых каучук находится в виде молекул или в виде коллоидных частиц.[8, С.58]

При химических превращениях как низкомолекулярных, так и высокомолекулярных соединений редко достигается 100%-е превращение. Однако в отличие от реакций низкомолекулярных соединений, при которых конечные и промежуточные продукты реакции можно отделить от исходных, звенья, по-раз-ному^затроиутые данной химической реакцией, входят в состав °Дно|1 ц тон же макромолекулы и при одном и том же их сред-[9, С.157]

Сведения о химических превращениях полидиенов, и более всего НК, с целью модификации их свойств систематизированы в известных монографиях и сборниках, в обзорных статьях [1—5, 9, 10, 34]. Теоретические аспекты реакционной способности полимеров изучали в работах [30, 31].[1, С.236]

Неоднородность продуктов реакции. При химических превращениях как низкомолекулярных, так и высокомолекулярных соединений редко достигается полнота превращения, но в отличие от реакций низкомолекулярных соединений, при которых конечные и промежуточные продукты реакции можно отделить от исходных, продукты реакций высокомолекулярных веществ соединены в одной молекулярной цепи. Поэтому только при полном завершении химической реакции полимера состав полученного продукта отражает действительную степень замещения или превращения его функциональных групп. Во всех других случаях результаты реакций являются среднестатистическими.[7, С.216]

Большинство полимеров относится к диамагнетикам, и поэтому их изучают методом ЯМР. Однако при химических превращениях, а также под действием облучений, в полимерах образуются свободные радикалы. Поскольку в последних электронный спин не скомпенсирован, они обладают электронным парамагнетизмом и могут быть исследованы методами ЭПР.[4, С.267]

Эта реакция используется для оценки количественного изменения содержания цистиновых связей при различных химических превращениях белка.[2, С.367]

Авторами данного учебника сделана попытка обобщить и систематизировать обширный экспериментальный материал о химических превращениях полимерных соединений, накопленный в последние годы и опубликованный в различной, главным образом периодической, литературе. Основное внимание в книге уделено рассмотрению представителей различных групп полимерных соединений, их строению и методам синтеза; физико-химические свойства полимеров освещены очень кратко. Эти сведения, по мнению авторов, должны найти более полное отражение в специальном учебном пособии, поскольку в ряде вузов химия и физическая химия полимеров изучаются раздельно, как две самостоятельные дисциплины.[3, С.7]

Побочные реакции носят преимущественно внутримакромо-лекулярный характер и только небольшая часть их протекает между различными макромолекулами, соединяющимися при этом неустойчивыми химическими связями. Только этим можно объяснить нерастворимость дизакрила. При различных химических превращениях неустойчивые связи между цепями разрушаются, и полимераналоги дизакрила становятся растворимыми веществами.[3, С.316]

Деструкция полимеров — это разрушение макромолекул.- под действием различных физических и химических агентов. В результате деструкции, как правило, уменьшается молекулярная масса полимера, изменяется его строение, а также физические и механические свойства; полимер становится непригодным для практического использования. Следовательно, этот процесс является нежелательной побочной реакцией при химических превращениях, переработке и эксплуатации полимеров. В то же время реакции деструкции в химии высокомолекулярных соединений играют и положительную роль. Эти реакции используют для получения ценных низкомолекулярных веществ из природных полимеров (например, аминокислот из белков, глюкозы из крахмала), а также для частичного снижения молекулярной массы полимеров с целью облегчения их переработки. С помощью некоторых деструктивных процессов можно определять строение исходных полимеров и сополимеров. Процессы, приводящие к разрыву химических связей в макромолекулах, как уже отмечалось, используют для синтеза привитых и блок-сополимеров.[6, С.67]

В процессах химических превращений полимеров следует избегать применения высоких температур, концентрированых кислот и щелочей, а тем более окислителей. Полимераналогичные превращения рекомендуется проводить в атмосфере азота. Эти предосторожности необходимы для уменьшения возможности протекания процессов деструкции, которые могут привести к разрыву макромолекулярных цепей (т. е. к снижению их среднего молекулярного веса), к появлению новых разветвлений (т. е. к изменению структуры цепей) и, наконец, к различным нежелательным побочным процессам в результате вторичных реакций между функциональными группами. Особенно интенсивно развиваются процессы окислительной деструкции при химических превращениях предварительно растворенных полимеров. Растворение полимера облегчает доступ к отдельным звеньям цепей не только для реагирующих веществ, но и для кислорода, в результате оба процесса становятся конкурирующими. С повышением температуры реакционной смеси, увеличением интенсивности перемешивания и при введении даже очень небольшого количества окислителей усиливается деструктирующее влияние кислорода.[3, С.172]

Магнитный резонанс, связанный с электронным парамагнетизмом, изучается в отдельном разделе радиоспектроскопии, называемом электронным парамагнитным резонансом (ЭПР). Магнитный резонанс, связанный с магнетизмом атомных ядер, называется ядерным магнитным резонансом (ЯМР). К методам магнитного резонанса относится также метод ядерного квадрупольного резонанса (ЯКР), где изучаются электрические квадрупольные моменты ядер. Этот метод может применяться при исследовании кристаллических полимеров, а также при измерениях внутренних напряжений в некристаллических полимерах. Так как полимеры в основном относятся к диамагнитным веществам, к ним наиболее широко применяется метод ЯМР. Однако при химических превращениях, а также под действием облучений в полимерах образуются свободные р'адикалы. Свободные радикалы, электронный спин в которых не скомпенсирован, обладают электронным парамагнетизмом и могут быть исследованы методами ЭПР. Поэтому метод ЭПР в основном применяется в химических исследованиях, а ЯМР — в физических.[5, С.210]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
4. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
5. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
6. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
7. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
8. Белозеров Н.В. Технология резины, 1967, 660 с.
9. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
10. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
11. Адрианов Р.А. Пенопласты на основе фенолформальдегидных полимеров, 1987, 81 с.
12. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
13. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
14. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
15. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
16. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
17. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
18. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
19. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
20. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
21. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.

На главную