На главную

Статья по теме: Изменение распределения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

До настоящего времени взаимное влияние этих двух механизмов эволюции структуры (изменение дефектной структуры кристаллической решетки и изменение распределения атомов разных химических элементов) в ходе отжига деформированных сплавов и интерметаллидов изучено недостаточно. Несомненно, что исследование их взаимного влияния, так же как и исследование взаимосвязи между структурными изменениями и изменениями свойств, займет важное место в дальнейших исследованиях, направленных как на понимание фундаментальных процессов, протекающих при отжиге материалов, подвергнутых ИПД, так и на исследование термостабильности субмикрокристаллических материалов при их промышленном применении.[2, С.147]

В одной из последних работ [141] изучалось развитие пред-пробивных явлений в тщательно очищенной (деионизованной) воде, применяемой в качестве диэлектрика в современных импульсных накопителях энергии. С помощью интерферометра Маха — Цендера, электронно-оптического преобразователя и высокоскоростной фоторегистрации изучено изменение распределения поля в разрядном промежутке непосредственно перед пробоем и обнаружено возникновение зон интенсивного оптического возмущения на расстоянии около 200 мкм от катода и шириной около 100—150 мкм, распространяющихся со скоростью звука от катода к аноду. При достижении одной из зон анода развивается разряд к аноду и устанавливается окончательный пробой разрядного промежутка. Морозов и Кучинский [141] полагают, что наиболее возможной причиной распространения таких пред-пробойных зон возмущения в воде является движение в канале возмущения под действием электрического поля отрицательного заряда, возникшего в диэлектрике в результате инжекции электронов с катода и их захвата молекулами воды. Однако сам механизм такого движения, происходящего со скоростью звука, пока не ясен. Возможно, он сопровождается эстафетной передачей электронов от молекулы к молекуле и распространением вследствие этого ударной волны за счет динамических усилий в головке канала возмущения.[7, С.154]

При истечении жидкости из резервуара 1 через трубу (капилляр) 2 (см. рис. 4.5 и 4.8) происходит существенная перестройка структуры потока, связанная с формированием профиля скоростей. При входе в трубу профиль скоростей имеет практически прямоугольную форму (у « 0). Лишь у самой стенки трубы (капилляра) скорость пристенного слоя полимерной жидкости приближается к нулю. Постепенно скорость слоев жидкости, близких к оси трубы (капилляра), возрастает. Такое изменение распределения скоростей по сечению потока продолжается до тех пор, пока профиль скоростей не приобретет формы, соответствующей режиму течения. Для ньютоновских жидкостей эпюра скоростей описывается квадратичной параболой. Для неньютоновских псевдопластичных жидкостей скорость потока в данном случае жидкости связана со средней скоростью течения зависимостью[1, С.176]

Изменение распределения мономерных звеньев в зависимо сти от состава сополимера влияет преимущественно на гибкость макроцепи и температуру стеклования (табл 17)[3, С.43]

При рассмотрении совокупности свойств более важным представляется изменение распределения по размерам активных цепей в сетке, ибо более однородное ММР приводит к более равномерному распределению по цепям напряжений, возникающих при деформации и, следовательно, к большей деформируемости сетки.[4, С.219]

Следствие конформационных переходов в аморфных областях полимеров при ориентировании — изменение распределения сегментов молекул в аморфных участках по длинам. Обнаружение в ориентированных полимерах после прорастания шейки заметного числа свернутых конформеров [56] позволяет считать, что в межкристаллитных аморфных прослойках по крайней мере часть молекул имеет длину, большую чем 1Л. В процессе ориентационной вытяжки разнодлинность молекул в аморфных прослойках уменьшается. Это подтверждается ИК-спектроскопиче-скими данными по изучению распределения напряжений в нагруженных образцах разной степени вытяжки [133]. Найдено, что в ориентированных образцах ПКА, ПП и др. с разной К число держащих нагрузку молекулярных цепей в аморфных об-[12, С.226]

При увеличении температуры и длительности пиролиза возрастает относительное количество двойных связей транс-вини-ленового типа. Изменение распределения ненасыщенности по типам связей объясняется тем, что в ходе деструкции в полимере накапливаются молекулы с двойными связями на концах и становится более вероятным протекание процессов полимеризации. Кроме того, при высокой температуре могут идти вторичные реакции непосредственно с отщеплением водорода и с образованием двойной связи при термической деструкции полиэтилена. По-видимому, в полимере образуются полиеновые и полифе-нильные системы, которые действуют затем как стабилизаторы, вызывая уменьшение скорости деструкции по мере ее протекания.[14, С.280]

Поскольку концентрация разветвляющего агента, трифункционального спирта, во всех этих опытах была одна и та же, причиной повышения эффективной плотности узлов сетки полимера с температурой может быть изменение распределения цепей сетки по длинам, хотя нельзя не учитывать и еф-фект циклизации (см. главу 2, § 5, п. 2).[11, С.130]

Хорошее совпадение между теоретическим и экспериментальным распределением по молекулярным весам является убедительным доказательством правильности этой упрощенной теории деструкции под действием ультразвука. При выводе уравнений (15) и (16) было показано, что изменение распределения по числу и весу в ходе деструкции может быть описано следующими соотношениями.[10, С.89]

Данные, полученные при исследовании релаксационных процессов, протекающих в наполненных полимерах (см. гл. III), показывают, что в присутствии" наполнителя происходит некоторое ограничение подвижности молекул полимера в поверхностном слое на границе раздела, обусловленное взаимодействием молекул с поверхностью наполнителя. Совершенно очевидно, что поскольку при этом происходит изменение распределения межмолекулярных сил, то оно отражается на плотности упаковки макромолекул.[5, С.17]

Увеличение частот и интегральных интенсивностей полос в ИК-спект-рах фторированных стиролов по сравнению со стиролом (см. табл. 1 и 2) можно объяснить увеличением электронной плотности в связи и асимметрией ее распределения вследствие несимметричного замещения атомов водорода при двойной связи. В связи С=С фторированных стиролов деформированное я-электронное облако более прочно, чем в стироле, связано с ядрами атомов углерода, в результате чего поляризуемость связи С=С уменьшается. Это приводит к уменьшению интенсивностей линий VG=G B спектрах комбинационного рассеяния по сравнению со стиролом. С увеличением числа атомов фтора в винильной группе фторированных стиролов и симметрии их расположения интенсивности линий г?с=с в спектрах комбинационного рассеяния уменьшаются (табл. 2). Изменение распределения электронной плотности в связи С=С приводит также к существенному снижению сопряжения я-электронов двойной связи с я-электронами бензольного кольца, что дополнительно увеличивает наблюдаемые эффекты (особенно уменьшение интенсивностей в спектрах комбинационного рассеяния ввиду их большой чувствительности к эффекту сопряжения).[13, С.49]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
3. Сеидов Н.М. Новые синтетические каучуки на основе этилена и альфа-олефинов, 1981, 192 с.
4. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
5. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
6. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
7. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
8. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
9. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
10. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
11. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
12. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
13. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
14. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную