На главную

Статья по теме: Изолированных макромолекул

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Характеристическая вязкость определяет поведение изолированных макромолекул. Она представляет собой меру потерь энергии на трение изолированных макромолекул о растворитель при их вращении в результате поступательного движения в потоке с градиентом скорости, отличным от нуля. Характеристическая вязкость зависит от размеров макромолекул в растворе, от природы раство-[2, С.101]

Возникновение таких напряжений возможно даже для изолированных макромолекул, .находящихся в растворе. Крекинг макромолекул в растворе при его течении с большим градиентом скорости наблюдался экспериментально [143, 144]. Подобные градиенты скорости (около 2-10е с~') возникают в растворах, например под действием ультразвука.[10, С.51]

Как уже отмечалось выше, зависимость между индивидуальными свойствами и структурой изолированных макромолекул и макроскопическими свойствами полимеров в блоке является достаточно сложной. Поэтому на современном уровне полимерной науки, которая развивается на основе самых общих представлений о специфических особенностях цепных молекул, по мере дальнейшей детализации теории удается лишь косвенно выяснить связь между индивидуальными характеристиками макромолекулы и некоторыми физическими свойствами полимера. Иначе говоря, в настоящее время предсказания теории можно использовать лишь для нахождения корреляционных соотношений между структурой и свойствами полимера. Например, вряд ли можно говорить о возможности описания физических свойств расплавов или концентрированных растворов полимеров в терминах индивидуальных характеристик макромолекул. Задача детального обсуждения зависимости между различными макроскопическими свойствами и молекулярным строением полимера выходит за рамки предмета настоящей главы, и поэтому мы рассмотрим лишь два параметра, а именно температуру плавления и температуру стеклования полимера, которые, по-видимому, проявляют наиболее четкую связь со структурой макромолекул. Кроме того, анализ этих свойств подтвердит высказанную ранее идею о том, что молекулярная структура не является единственным фактором, определяющим макроскопические свойства полимера.[17, С.164]

Обусловлено это тем, что именно в случае эластомеров высокая термодинамическая гибкость изолированных макромолекул сочетается со сравнительно малым межмолекулярным взаимодействием в полимере. Количественным выражением этого взаимодействия является плотность энергии когезии — величина, в случае жидкости численно равная энергии, необходимой для испарения 1 см3 вещества. Величина энергии когезии или непосредственно с ней связанного параметра растворимости 6 (см. стр. 33) является важной характеристикой полимера, от которой в значительной мере зависят способность его растворяться в тех или иных средах, степень совместимости полимеров друг с другом и с пластификаторами, температура стеклования, газо- водопроницаемость и целый ряд других свойств.[1, С.41]

Рассмотрим теперь структурные характеристики сетчатого полимера, образованного путем сшивания его исходных линейных изолированных макромолекул. Участок соединения макромолекул поперечными химическими связями называется узлом сетки или поперечной связью. Каждый узел оканчивается двумя сшитыми звеньями двух разных макромолекул полимера. Если размер поперечной связи совпадает с размером элементарного звена макромолекулы полимера, т. е. проявляет себя как жесткое структурное образование, то понятия узла сетки и поперечной связи совпадают. Если же поперечная связь по размеру существенно больше размера элементарного звена и сегмента, то узлами сетки называются сшитые звенья, т. е. число узлов вдвое больше числа поперечных связей.[3, С.296]

Итак, межмакромолекулярные реакции позволяют коренным образом изменять молекулярное строение полимеров, переводя их из состояния изолированных макромолекул в состояние единой[3, С.307]

При правильной экстраполяции к бесконечному разведению зависимость [TI] от q должна быть обусловлена исключительно свойствами отдельных изолированных макромолекул в растворе. Общее изменение вязкости раствора конечной концентрации является следствием как изменения взаимодействия между макромолекулами, так и изменения состояния отдельных макромолекул в поле градиента скорости [ЗЬ|.[13, С.294]

В книге, написанной ведущими японскими специалистами, освещаются экспериментальные и теоретические исследования в области статистической физики изолированных макромолекул и сетчатых полимеров, а также кинетики формирования и морфологии надмолекулярных структур кристаллизующихся полимеров в блоке.[14, С.336]

В книге, написанной ведущими японскими специалистами, всвещаются экспериментальные и теоретические исследования в области статистической физики изолированных макромолекул и сетчатых полимеров, а также кинетики формирования и морфологии надмолекулярных структур кристаллизующихся полимеров в блоке.[17, С.4]

Для полимеров межмолекулярные силы значительно слабее внутримолекулярных, поэтому уровни энергии полимеров практически совпадают с уровнями энергии изолированных макромолекул. Спектры полимеров очень чувствительны к малейшим изменениям в химическом составе и структуре макромолекул.[8, С.26]

Рассматривая влияние структуры макромолекулы на молекулярном уровне на кинетическую гибкость, можно еще раз подчеркнуть, что основные закономерности, выведенные для изолированных макромолекул, сохраняются и для конденсированного состояния[5, С.101]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
5. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
6. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
7. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
8. Калинина Л.С. Анализ конденсационных полимеров, 1984, 296 с.
9. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
10. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
11. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
12. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
13. Рафиков С.Р. Методы определения молекулярных весов и полидисперности высокомолекулярных соединений, 1963, 337 с.
14. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
15. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
16. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
17. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
18. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
19. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
20. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
21. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
22. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
23. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
24. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
25. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную