На главную

Статья по теме: Кристаллической модификации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Следует иметь в виду, что переход из одной кристаллической модификации фторопласта-4 в другую, происходящий при температуре около 20°, связан с изменением объема примерно на 1,5%. Поэтому, если механическую обработку производить при температуре ниже 20°, а применять изделие при температуре выше 20°, то размеры изделия соответственно изменятся. Поэтому в помещении, где производится механическая обработка фторопласта-4, следует поддерживать температуру на строго определенном уровне, лучше всего между 22 и 24°, а заготовки, если они принесены из другого помещения с более низкой или более высокой температурой, выдержать при 22—24° в течение нескольких часов.[13, С.76]

Рентгенографическое исследование структуры двукратно ориентированных образцов полиметилена (полиэтилена) показало, что упаковка цепей этой кристаллической модификации более удовлетворительно объясняется триклинной ячейкой, идентичной с подъячейкой нормальных парафинов с числом атомов С ^ 20. Найденные для полимеров три наиболее сильные дополнительные отражения (4,56, 3,80 и 3,55 А) и отражения, наблюдаемые в случае нормальных парафинов ds и С2о (4,56, 3,79 и 3,58А), должны происходить от плоскостей, расположенных параллельно направлению цепи. Для полиэтилена предположены следующие параметры элементарной ячейки: а — 4,285; Ь = 4,82; с = 2,54; а = 90°; р = 100°15'; у = 108° 1648.[12, С.265]

Значительно более обоснованными являются представления Карозерса [42], считавшего, что при холодной вытяжке кристаллических полиэфиров на границе шейки происходит фазовое превращение одной кристаллической модификации в другую. Эти представления получили дальнейшее развитие в работах Брайента, Хорсли и Нанкароу [9, 46], отметивших, что при холодной вытяжке не происходит изменения степени кристалличности, что этот процесс происходит путем перестройки кристаллов. В работе Брайента также ставится вопрос о том, что кристаллический полимер следует рассматривать не как двухфазную систему, а скорее как единую, но сложную фазу.[9, С.84]

Рихтер с сотр. [689, 690] исследовали распределение атомов в твердом и жидком аморфном селене. Они обнаружили существование в нем трех типов структурных областей: нормальной гексагональной решетки кристаллической модификации селена, слоистой структуры, соответствующей этой же решетке, но с увеличенным расстоянием между слоями (3,80 А) и связанных в слои колец Se6. Хиллиг [691] исследовал кристаллизацию очень чистого селена в области температур 60—200°. Гортон [692] при исследовании структуры селена в тонких пленках, полученных путем испарения из расплава (Se -f TlSe3), отметил образование необычной кольцевой структуры. Фридман [693] определил характеристические потери энергии электронов средних скоростей в слоях селена различной структуры. Изменение структуры селена при освещении наблюдал Штегман [694]. Хайман [695] изучил кристаллизацию гексагонального селена из паров в атмосфере аргона.[11, С.420]

Переходы из одного агрегатного состояния в другое могут быть фазовыми и нефазовыми. При фазовом переходе одновременно с агрегатным изменяется и фазовое состояние. К таким переходам относятся плавление, кристаллизация, переход одной кристаллической модификации в другую, конденсация, испарение и сублимация. Различают термодинамическое и структурное понятия фазы. Фаза в термодинамическом понимании представляет собой однородную часть системы, имеющую поверхность раздела, отделяющую ее от других частей. В структурном же понимании фазы отличаются друг от друга порядком в расположении молекул. У низкомолекулярных веществ существуют три фазовых состояния: кристаллическое, аморфное и газообразное.[3, С.131]

В частично-кристаллических полимерах могут обнаруживаться все типы переходов, присущие некристаллическим полимерам, и, кроме того, максимумы, связанные с кристаллическими областями: 1) плавление кристаллических областей; 2) переход из одной кристаллической модификации в другую; 3) движение боковых групп в пределах кристаллических областей; 4) взаимодействие между некристаллическими и кристаллическими областями и 5) внутреннее трение при движении внутри кристаллических областей.[1, С.244]

Фазовые переходы первого рода сопровождаются скачкообразным изменением внутренней энергии и удельного объема; при этих переходах происходит поглощение или выделение тепла (теплота " перехода). К таким переходам относятся процессы плавления, испарения, сублимации, многие переходы из одной кристаллической модификации в другую. В условиях равновесия мольные и удель- -ные термодинамические потенциалы фаз равны, следовательно, термодинамический потенциал при переходе первого рода изменяется непрерывно, по его производные -jp = V и -^ — — S испытывают скачок. Скачок энтропии AS равен теплоте перехода, деленной на абсолютную температуру -^-,[4, С.128]

Диэлектрические свойства сополимера ТФЭ — ТрФЭ характеризуются высокими значениями диэлектрической проницаемости и тангенса угла диэлектрических потерь, которые зависят от температуры и частоты. Для сополимера с небольшим содержанием ТрФЭ наблюдаются области максимумов тангенса угла диэлектрических потерь и ступенчатое изменение диэлектрической проницаемости вблизи температур перехода из одной кристаллической модификации в другую [24, с. 224]. Зависимость значений tg б, е и плотности рго от содержания в сополимере ТрФЭ приведены ниже [63]:[5, С.139]

Влияние кристаллизации. В кристаллических полимерах молекулярное тепловое движение более сложно, чем в аморфных полимерах. Если степень кристалличности полимера меньше 50—70 %, то у такого полимера могут наблюдаться области максимумов tg б, которые характерны для аморфного полимера. Кроме того, в кристаллизующихся полимерах возможны области максимумов tg б, связанные с плавлением полимера, переходами из одной кристаллической модификации в другую, локальным движением макромолекул в кристаллических областях, молекулярным движением участков макроцепей, образующих складки на поверхности кристаллитов. Отнесение наблюдающихся максимумов диэлектрических потерь к определенному виду молекулярного движения в случае кристаллических полимеров — еще более сложная задача, чем в случае аморфных полимеров.[7, С.90]

Первые экспериментальные данные, показавшие, что в ПЭВД имеются упорядоченные области, были получены Банном в 1939 г., обнаружившим в рентгенограммах, наряду с диффузным галло резкие дифракционные рефлексы. Картина рентгеновской дифракции ПЭВД оказалась сходной с картиной рентгеновской дифракции нормальных алкановых углеводородов, например С36Н,4. Полученные данные показали, что ПЭВД, как и нормальные алкановые углеводороды, кристаллизуется в орторомбической кристаллической модификации со следующими параметрами элементарной ячейки: а = 0,736 нм, Ъ = 0,492 нм, с = 0,254 нм, имеющей пространственную группу симметрии D'26h Вскоре была обнаружена связь между степенью разветвленности макромолекул полиэтилена (числом'СН3-групп) и степенью кристалличности. Подробное исследование этой связи показало, что с уменьшением степени разветвленности степень кристалличности увеличивается, а вместе с ней изменяются такие свойства полимера, как плотность, температура плавления, модуль упругости при растяжении, твердость. Раэветвленность макромолекул полиэтилена является одной из важнейших его характеристик, наряду с молекулярной массой и ММР.[2, С.142]

Ячеистое строение коллоидных частиц сохраняется в течение нескольких недель, после чего в электронном микроскопе можно наблюдать картину ярко выраженных кристаллов (рис. 16), а на электронограммах появляются сплошные кольца. Вначале, как правило, имеются только три интенсивных кольца. В дальнейшем количество колец увеличивается, но одновременно меняется интенсивность некоторых из них. Это происходит, по-видимому, вследствие разной скорости роста отдельных плоскостей кристалла и не связано с изменением кристаллической модификации. Из расчета межплоскостных расстояний полученных нами структур коллоидных частиц гидроокиси алюминия и сравнения их с теоретически вычисленными данными следует, что в результате кристаллизации золя гидроокиси алюминия получается гидраргиллит.[10, С.172]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
3. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
4. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
5. Пашин Ю.А. Фторопласты, 1978, 233 с.
6. Парамонкова Т.В. Крашение пластмасс, 1980, 320 с.
7. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
8. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
9. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
10. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
11. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
12. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
13. Чегодаев Д.Д. Фторопласты, , 196 с.

На главную