На главную

Статья по теме: Механической деформации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Преимуществом вулканизаторов непрерывного действия перед прессами периодического действия являются: сравнительно небольшие размеры; меньший расход теплоносителя; отсутствие перевулканизации и механической деформации транспортерной ленты; возможность регулирования продолжительности вулканизации изменением частоты вращения барабана; безопасность обслуживания.[2, С.48]

В последнее время опубликован ряд работ [22, 50, 51], в которых подвергнуты критике существующие теории адгезии и в качестве наиболее общей теории предложена реологическая теория адгезии, или теория механической деформации адгезионных соединений. Такая теория могла бы быть полезна, если бы она дала возможность понять причины существования адгезии на границе раздела фаз. Однако эта теория вообще не дает ответа на вопросе причине адгезии между двумя твердыми телами или твердым телом и жидкостью и может рассматриваться не как теория адгезии, а, скорее, как теория адгезионных соединений. Действительно, согласно Шарпу [51], прочность адгезионной связи не определяется межфазными силами, так как чисто адгезионное разрушение встречается очень редко. Вряд ли такое положение может быть приемлемым. Мы считаем [52], что прежде всего необходимо четкое разделение двух понятий — адгезии и адгезионной прочности. Существует понятие адгезии как физического явления [12, 13] и определение адгезии как термодинамической величины. Одновременно существует и другое понятие — «адгезионная прочность» соединения, относящееся к области разрушения твердых тел. Адгезионная прочность является кинетической величиной, зависящей от скорости расслаивания, а не равновесной характеристикой. Хорошо известно, что теоретическая прочность твердых тел не соответствует их реальной механической прочности. Теоретическая прочность определяется молекулярными силами, в то время как реальная прочность зависит от дефектов структуры и других факторов. Процесс деформации твердых тел является неравновесным и связан с диссипацией энергии. Несоответствие между термодинамически вычисленной работой адгезии и определенной экспериментально адгезионной прочностью является результатом того, что при разрушении адгезионного соединения его прочность определяется в неравновесных условиях. Поэтому можно ожидать, что между понятиями «адгезия» и «адгезионная прочность» соответствие будет существовать только в том случае, когда последняя определяется в термодинамически равновесных условиях разрушения идеальной структуры, т. е. при деформации с бесконечно малой скоростью. Таким образом, при постоянстве термодинамической работы адгезии (величины, определяемой только природой взаимодействующих поверхностей) работа разрушения адгезионного соединения может изменяться в зависимости от многих факторов. Поэтому термодинамическая работа адгезии, если она правильно определена (см. выше), является единственной величиной, характеризующей адгезию и имеющей физический смысл независимо от условий испытания или условий формирования адгезионного соединения, приводящих к тем или иным дефектам.[6, С.15]

Уайт [49] изучал влияние механической деформации на поведение найлоновых волокон при плавлении. При плавлении волокон нерастянутого найлона 66 наблюдается единственный термический пик в области 240—265°. Если те же самые волокна растянуть до 400%, то наблюдаются два пика (рис. 84). Первый, больший пик проявляется при 240—257°, после чего термограмма совпадает с термограммой недеформированного волокна. Рентгенограмма образца, нагретого до 258°, совпадает с рентгенограммой нерастянутой нити. Два пика на кривой ДТА появляются в результате исчезновения ориентации, вызванной растяжением, и последующего обычного плавления образца.[11, С.147]

Па рис. 3 приведены данные по механической деформации 20%-ного студня при различных температурах. Как видим, частотная зависимость практически отсутствует вплоть до плавления студня. При плавлении локальные связи распадаются, в результате чего появляется возможность для перемещения молекул относительно друг друга и для появления релаксационных свойств. Процесс распада локальных связей идет настолько быстро, что после 30-мипутного нагревания студня при 30° не удается снять механические характеристики. Поэтому данные для 30° были сняты после нагревания студня в течение 10 мин.[10, С.301]

Аналогично диэлектрической проницаемости должны зависеть от частоты механической деформации податливость, равная обратной величине модуля упругости, и пьезомодули dz\, dzz, dw Обычно значения податливости и пьезомодулей измеряют в статическом или квазистатическом режиме, когда частота деформации не превышает 100 Гц. При высоких частотах имеются лишь единичные измерения податливости и пьезомодулей. При 108 Гц значение податливости в 2 раза меньше, чем при 10 Гц [151]. Пьезомодуль dzi практически не изменяется с частотой от 10 до 3-Ю4 Гц; пьезомодуль d33 при 1,4-107 Гц примерно в 2 раза .меньше, чем при 104 Гц [158].[7, С.186]

Хотя ход реальных кривых и не согласуется в точности с предсказываемым соотношением (118), в обоих случаях отчетливо видно значительное увеличение изотропной длины. Особенно сильно этот эффект проявляется для полиэтилена, где происходит двадцатикратное увеличение длины без приложения какой-либо растягивающей силы. Подобных удлинений не удается достичь даже при механической деформации обычных аморфных сеток. В этом случае свободному развитию деформации либо мешает кристаллизация, либо происходит разрыв отдельных цепей. Во всяком случае, механическая деформация не приводит к удлинениям, сравнимым с показанными на рис. 57.[12, С.195]

Старение представляет собой процесс самопроизвольного изменения свойств полимеров (прочности, эластичности, твердости и т.д.), протекающий при хранении или эксплуатации полимеров и материалов на их основе. Старение является, прежде всего, результатом химических процессов, обусловленных действием кислорода, озона (небольшие количества его всегда находятся в атмосфере), нагревания, света, радиоактивного излучения, механической деформации и т. д., которые приводят к деструкции и структурированию. Из перечисленных факторов решающее значение имеет действие кислорода, остальные играют роль инициаторов окисления. Старение возможно также за счет испарения из полимерной композиции летучих компонентов (ингибиторы, пластификаторы), а также релаксации цепей или их участков у ориентированных материалов. На рис. 199 показано влияние окислительного старения на механические свойства вулканизатов.[5, С.644]

В работе Ц] было показано на примере гидратцеллюлозы, что целлюлоза и ее производные не имеют никакой кристаллической решетки, как это считалось до последнего времени, а представляет собой аморфные вещества. Вопрос о том, представляет ли собой какое-либо высокополимерное вещество кристаллическое или аморфное тело при нормальных температурах, является весьма существенным при объяснении всех физико-химических свойств данного высокополимерного вещества. Если принять для высокополимерных веществ аморфную структуру, то совершенно иначе нужно объяснить поведение этих веществ при механической деформации, их реакционную способность, набухание, растворение и т. д.[9, С.40]

Интенсивное перемешивание высоковязких смесей расплавами частично расплавленного полимера требует подвода извне очень большой мощности. При этом классический метод плавления с пере-мешиванием, основанный на нагреве за счет теплопроводности (с подводом тепла из расплавленных областей к твердому материалу и от горячих стенок сосуда к расплаву), превращается в метод диссипа-тивного плавления с перемешиванием. Основным источником тепла здесь является двигатель привода, работа которого переходит в тепло за счет диссипативного вязкого трения в расплавленных областях и в результате механической деформации в нерасплавленных областях, а на начальных стадиях —[1, С.253]

В твердом ПБГ может сохраняться также и нематическая сверхструктура. Такая одноосная структура образуется при ориентации жидкого кристалла в магнитном поле (большем, чем Нс) и последующем медленном испарении растворителя в присутствии поля. В результате получается высокоориентированный одноосный образец ПБГ, молекулы которого параллельны первоначальному направлению поля. Одноосная структура показана на сним-ке скола образца (рис. 16,6). На снимке видна фибриллярная структура, в которой фибриллы параллельны направлению действовавшего-магнитного поля (вертикально на снимке). Исследования упорядоченных в магнитном поле пленок методом дифракции рентгеновских лучей показали, что упорядоченность в них сравнима с той,, которую получают при механической деформации волокон [50].[8, С.204]

Настоящее сообщение посвящено изучению механической деформации разбавленных студней в зависимости от температуры.[10, С.299]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Мухутдинов А.А. Альбом технологических схем основных производств резиновой промышленности, 1980, 72 с.
3. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
4. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
5. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
6. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
7. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
8. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
9. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
10. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
11. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
12. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
13. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
14. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную