На главную

Статья по теме: Межатомных расстояний

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Увеличение межатомных расстояний при растяжении главной цепи, понижении энергии связей и их ослаблении может сопровождаться перераспределением потенциальной энергии между цепями и молекулами присутствующих реагентов. Перераспределение энергии, способствуя образованию промежуточных соединений или активированных комплексов [110], еще более увеличивает вероятность разрыва цепи без образования свободных радикалов в присутствии деструктирующих реагентов.[13, С.43]

Постепенное увеличение межатомных расстояний вплоть до величин, соответствующих разрыву, по всей вероятности, также снижает устойчивость связей к внешним воздействиям, т. е. активирует их. Причем это ослабление связей при растяжении за пределами соотношения величины локального напряжения к теоретической прочности 0,5 резко возрастает не пропорционально напряжению (см. рис. 7).[13, С.42]

Если процесс полимеризации протекает со значительным изменением межатомных расстояний, зарождение полимерной фазы и развитие реакции полимеризации очень затруднено. Но иногда начавшийся в нескольких точках процесс полимеризации создает благоприятные условия для протекания реакции на границе раздела полимер — кристалл.[3, С.124]

Если процесс полимеризации протекает со значительным изменением межатомных расстояний, зарождение полимерной фазы и развитие реакции полимеризации очень затруднено. Но иногда начавшийся в нескольких точках процесс полимеризации создает благоприятные условия для протекания реакции на границе раздела полимер — кристалл.[3, С.177]

В тех случаях, когда полимеризация сопровождается небольшим изменением межатомных расстояний, процесс может протекать внутри кристаллической решетки и образующиеся макромолекулы ориентируются вдоль определенной оси кристалла. Происходящие после этого даже небольшие перераспределения межатомных расстояний могут приводить к образованию дефектов и напряжений в решетке, затрудняющих дальнейшую полимеризацию.[3, С.124]

В тех случаях, когда полимеризация сопровождается небольшим изменением межатомных расстояний, процесс может протекать внутри кристаллической решетки и образующиеся макромолекулы ориентируются вдоль определенной оси кристалла. Происходящие после этого даже небольшие перераспределения межатомных расстояний могут приводить к образованию дефектов и напряжений в решетке, затрудняющих дальнейшую полимеризацию.[3, С.177]

Упругая (гуковская) деформация связана с деформированием валентных углов и изменением межатомных расстояний. После снятия нагрузки упругая деформация полностью восстанавливается за время, меньшее 10~3 с.[1, С.134]

В случае стеклообразных полимеров первым следствием прикладываемой нагрузки является изменение межатомных расстояний и валентных углов в полимерной цепи. Эти изменения определяют мгновенную упругую деформацию. Упругая деформация связана с подвижностью атомов, составляющих звенья макромолекул внутри статистического сегмента макроцепи. При деформировании полимеров, находящихся в стеклообразном состоянии, возникновение двулучепреломления и его величина в основном обусловлены смещением электронных оболочек атомов и электронных облаков, образующих химические связи, а также искажением валентных углов, что приводит к анизотропии поляризуемости элементарных звеньев макромолекул.[5, С.236]

Деформационная способность полимерных материалов, обусловленная полностью обратимым изменением валентных углов и межатомных расстояний в полимерном субстрате под действием внешних сил, характерна для проявления упругих свойств. Температура, ниже которой полимерное тело может деформироваться под действием внешних сил как упругое, называется температурой хрупкости Гхр. Действие внешних силовых полей может быть представлено (рис. 3.3, а) как всестороннее сжатие, сдвиг и растяжение. Вместе с тем всякая конечная деформация полимерного материала проявляется, с одной стороны, как деформация объемного сжатия (или расширения), характеризующая изменение объема тела при сохранении его формы (дилатансия), а с другой, - как деформация сдвига, характеризующая изменение формы тела при изменении его объема (см. рис. 3.3, б). В связи с этим реологическое уравнение состояния должно описывать как эффекты, связанные с изменением объема деформируемого тела, так и влияние напряжений на изменение его формы. В общем случае деформация проявляется в двух видах: как обратимая и как необратимая. Энергия, затрачиваемая на необратимую деформацию, не регенерируется.[1, С.127]

Появление в результате ИПД высокой плотности дислокаций и дисклинаций приводит к упругим искажениям кристаллической решетки и изменениям межатомных расстояний, а, следовательно, можно ожидать и изменения тепловых характеристик наноструктурных материалов. Обнаруженное в работах [81, 135] изменение тепловых характеристик наноструктурных Ni и Си, полученных ИПД (см. §2.1), имеет закономерности, аналогичные тем, что были обнаружены в наноструктурных материалах, полученных методом газовой конденсации [83, 107, 220-225]. Так, например, температура Дебая оказалась уменьшенной на 21 % в Сг (Инм) [222] и 15% в Аи (10нм) [225]. В этих работах в качестве возможных причин, которые могут вызвать изменения тепловых характеристик наноматериалов, полученных методом газовой конденсации, указываются специфические тепловые колебания атомов в поверхностном слое порошинок или увеличенная концентрация точечных дефектов в области границ зерен.[7, С.113]

Очевидно, что при малой деформации идеального кристалла, когда кристаллическая структура не нарушается, напряжение возникает только за счет изменения межатомных расстояний кристаллической решетки, и тогда для идеального кристалла[2, С.109]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
3. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
4. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
5. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
8. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
9. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
10. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
11. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
12. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
13. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
14. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
15. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
16. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
17. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
18. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
19. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
20. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
21. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
22. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
23. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
24. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
25. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
26. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
27. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
28. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
29. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
30. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
31. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.

На главную