На главную

Статья по теме: Многократной деформации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

По ГОСТ 9.062—75 определяют изменение массы образца и его динамическую ползучесть при многократной деформации растяжения в заданной среде. Стойкость резин к воздействию агрессивных сред при постоянном растягивающем напряжении (ГОСТ* 9.065—76) определяют показателями деформации растяжения по ползучести образцов. Определение коэффициентов[3, С.201]

В близкой связи с процессами старения находятся явления утомления и усталости полимеров. Утомление, наступающее в результате многократной деформации — динамическое утомление или длительного нахождения полимера в напряженном состоянии — статическое утомление, вызывает постепенное изменение свойств материала, называемое усталостью. Эти изменения могут вначале иметь как обратимый, так и необратимый характер, но, накапливаясь, всегда приводят к необратимым явлениям, которые заканчиваются разрушением полимерного образца. Утомляемость чаще всего измеряется числом циклов (JV) деформации, приводящим к разрушению полимерного материала (выносливость); приложенная при этом нагрузка представляет собой усталостную прочность, которая снижается с увеличением N.[6, С.645]

Двух- и многофазные полимерные смеси характеризуются высокими показа елями механических свойств Например, дол говечность многих смесей при многократной деформации в десятки раз выше долговечности исходных полимеров, молуль упр>гости резин резко возрастает при введении в них 20 30% пластмасс; введение 5—10% кауч)ка в пластмассы значительно улучшает их механические свойства (ударопрочный полистирол) Основную роль в улучшении механических свойств подобных смесей траст межфаэный переходной Слой, препятствую шли концентрации напряжений в какой-либо одной точке системы, т. е способ! твующий распре-делению напряжения по всему объему[2, С.425]

Анализ экспериментальных данных изучения износостойкости полимеров, находящихся в высокоэластическом (резины) и стеклообразном (пластмассы) состояниях, свидетельствует о том, что-износ — явление сложное, отражающее комплекс процессов, протекающих как в граничных слоях полимера, так и на поверхности трения. Между износом и внешним трением полимеров существует прямая связь. Чаще всего износ полимерных материалов обусловлен их усталостным разрушением в результате многократной деформации полимера в пятнах фактического контакта. Усталостный износ более характерен для полимеров, находящихся в высокоэластическом состоянии. Другой вид износа связан с процессом резания системой, имеющей острые выступы поверхности полимера. Этот так называемый абразивный износ более характерен для твердых полимерных материалов (различных пластмасс) . Если усталостный износ можно рассматривать как многоактный процесс, то абразивный износ является процессом одноактным. При трении полимеров по гладким поверхностям обычно имеет место усталостный износ, а при трении по шероховатым поверхностям — абразивный износ.[1, С.382]

При периодической многократной деформации вулканизатов при 110°С, скорости 0,5—1,0 м/мин константа скорости релаксации при относительной деформации а>1,5 подчиняется универсальному уравнению [755][7, С.304]

Динамическая прочность. Впервые увеличенное число циклов до разрушения при многократной деформации вулканизатов из смеси каучуков (натурального и бутадиен-стирольного) было обнаружено в 1958 г. [172]. В то время подобные результаты казались необычными или даже сомнительными (при учете двухфазной структуры исследованной в работе [172] смеси НК и БСК). Впоследствии повышенное сопротивление утомлению вулканизатов из смеси каучуков было продемонстрировано на многих парах полимеров. Типичные результаты для вулканизатов смеси СКД и GKH-18 приведены на рис. 9. Видно, что независимо от режима утомления динамическая выносливость смесей изменяется по кривой с максимумом.[11, С.39]

Гуль и Щукин показали, что число циклов до разрушения образца, вычисленное по формуле (1.36), согласуется с результатами утомления при многократной деформации, приведенными в работах_друг_их исследователей, _ию_-дает.- везмежнотггБ тгрогно- " ~зйроЖть~работоспособность полимеров при различных циклических испытаниях.[9, С.39]

Противоположное влияние на тр оказывает усиление межмолекулярного взаимодействия при длительном утомлении при малых напряжениях (в процессе многократной деформации происходит существенная активация химических процессов). Если преобладает влияние химических процессов при утомлении под действием циклических нагрузок, усиление межмолекулярного взаимодействия (оцениваемое значениями удельной когезионной энергии вулканизата) сопровождается увеличением механических потерь на внутреннее трение [60, с. 11; 61, с. 5]. В этом случае усиление межмолекулярного взаимодействия сопровождается снижением сопротивления утомлению.[9, С.160]

Испытание заключается в циклическом сжатии цилиндрического образца при заданной деформации и частоте в течение определенного времени и измерении его высоты и температуры после окончания многократной деформации.[3, С.145]

В результате многократных деформаций связь наполнителя с полимером даже в случае высокоэластичных каучушш уменьшается. Поверхность разрушенного деформированного вулканизата становится аналогичной наполненному СКС-85. При многократной деформации высокостирольного полимера связи наполнителя и полимера разрушаются еще в большей степени, что приводит к значительному падению модулей при повторной деформации.[5, С.42]

Механические силы, растягивающие, но еще не разрывающие цепную молекулу, способны изменять реакционную способность химических связей и, следовательно, влиять на скорость химических реакций. Это явление особенно заметно при многократной деформации, когда полимер не успевает релаксировать за один цикл деформации и в нем поддерживаются некоторые постоянные градиенты напряжения. Даже при наложении малых нагрузок благодаря неоднородному распределению напряжения в микрообластях в отдельных макромолекулах возникают большие напряжения, действующие против валентных сил и ослабляющие их. Вследствие этого снижается энергия активации и ускоряется химическая реакция.[6, С.641]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
3. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
4. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
5. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
6. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
7. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
8. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
9. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
10. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
11. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
12. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
13. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
14. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
15. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную