На главную

Статья по теме: Молекулярным кислородом

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Окисление полимеров молекулярным кислородом является цепным процессом с участием свободных радикалов, при этом первичными продуктами окисления являются гидропероксиды. Именно поэтому в качестве антиоксидантов (АО) — веществ, снижающих интенсивность окислительных процессов, — используют соединения, катализирующие разложение гидропероксидов, дезактивирующие металлы переменной валентности, поглощающие УФ-излучение, «обрывающие» цепные реакции и т. д. Многие из этих функций выполняют фенольные антиоксиданты. К тому же эти соединения в отличие от широко распространенных аминных антиоксидантов не вызывают изменения окраски материалов на основе каучуков и термопластов [1—3].[4, С.258]

Таким образом, окисление полимеров молекулярным кислородом— одна из самых распространенных химических реакций, которая является причиной старения полимеров и выхода из строя изделий. Окисление ускоряется под действием ряда химических реагентов и физических факторов, особенно тепловых воздействий. Процесс окисления протекает по механизму цепных свободноради-кальных реакций с вырожденным разветвлением. Механизм и кинетический анализ процесса термоокислительной деструкции полимеров показывают влияние химической природы полимера на его стойкость к этим воздействиям. Стабилизация полимеров от окислительной деструкции основана на подавлении реакционных центров, образующихся на начальных стадиях реакции полимера с кислородом, замедлении или полном прекращении дальнейшего развития процесса окислительной деструкции. Этб достигается введением ингибиторов и замедлителей реакций полимеров с кислородом, причем одни ингибиторы обрывают цепные реакции, другие предотвращают распад первичных продуктов взаимодействия полимерных макромолекул с кислородом на свободные радикалы. Сочетание ингибиторов этих двух классов позволяет реализовать эффект синергизма их действия, приводящий к резкому увеличению времени до начала цепного процесса окисления (индукционного периода).[3, С.275]

Окисление 1, Ьдиметил-З-феншииндаяа молекулярным кислородом протекает с удовлетворительной скоростью в отсутствии инициаторов и щелочных добавок лишь три температуре не «иже 90—100°. Так, при 100° средняя скорость окисления составляет 1,3% гидроперекиси в час, а максимальная концентрация гидроперекиси в реакционной массе—28,6 вес. ;%,[2, С.50]

Главная причина старения полимеров — окисление их молекулярным кислородом, которое особенно быстро протекает при повышенных температурах, например при переработке полимерных материалов. Окисление часто ускоряется и облегчается светом, примесями металлов переменной валентности, которые могут при-сутствов-ать в полимере из-за коррозии аппаратуры или неполного удаления катализатора из него после окончания синтеза. По типу активатора и основного агента, выбывающих разрушение полимеров, различают следующие виды старения: тепловое, термоокислительное, световое, атмосферное (озонное), радиационное и старение под влиянием механических нагрузок (утомление). • Преимущественное протекание при старении полимеров цепных реакций деструкции или структурирования зависит от химического строения цепей. Как правило, виниловые полимеры еклонны к деструкции, некоторые диеновые полимеры — к структурированию. Во всех видах старения деструкция макромолекул происходит тогда, когда в некоторых частях цепей сосредотачивается энергия, превосходящая энергию простой С—С-связи (305 кДж/моль). Это приводит к превращению макромолекулы в макрорадикал.[9, С.67]

Запатентованы процессы пероксидации полк-а-олефинов молекулярным кислородом при относительно низких температурах (до 80°С) и давлениях выше 1 кгс/см2 в растворе органических растворителей (кумола с небольшой добавкой метанола) [44]. Например, при окислении в этих условиях атактического полипропилена образуется полимер с молекулярным весом -~ 11 000, содержащий одну перекисную группу на 47 мономерных звеньев. После восстановления гидроперекисных групп до гидроксильных полипропилен можно сшивать диизоцианатами [45].[5, С.130]

Опираясь на закономерности хорошо изученной в настоящее время реакции насыщенных полимеров с молекулярным кислородом и учитывая характерные для реакций с серой отличия, можно с достаточной полнотой проанализировать и реакции серы с насыщенными углеводородными полимерами и выяснить закономерности реакций С—Н-связей полимеров с серой и серной вулканизующей системой.[10, С.189]

В результате проведенного исследования было установлено, что при жидкофазном окислении циклододекана молекулярным кислородом в присутствии борной кислоты в определенных условиях образуется цикло-додеканол с выходом —80%, считая на превращенный углеводород при общей степени превращения его 30—35% за один реакционный цикл.[13, С.199]

Задолго до начала четвертой стадии полимер становится непригодным для технических целей в результате ухудшения его физических свойств. В начале этой стадии распад гидроперекисей преобладает над их образованием, в дальнейшем же первичные продукты распада реагируют с молекулярным кислородом. Технологов интересовали главным образом стадии В и С и связь между ними, так как именно на этих стадиях происходит постепенное ухудшение, вплоть до полной потери, ценных физических свойств[12, С.159]

Реакции разрыва цепей под действием химических агентов рассматриваются в гл. 3—5. Глава 3 посвящена главным образом гидролизу; кроме того, в ней обсуждаются некоторые реакции, протекающие по закону случая, которые иначе трудно классифицировать. Окисление ненасыщенных и насыщенных полимеров молекулярным кислородом описано в гл. 4; в гл. 5 рассмотрены две внешне не связанные реакции—озонирование и сульфирование. Их совместное рассмотрение и включение в книгу, посвященную деструкции, объясняется тем, что описание этих процессов является естественным продолжением гл. 4.[12, С.20]

Развитие реакционной цепи происходит в результате взаимодействия пероксидно-го радикала ROO (реакция 2) с молекулой полимера (реакция 3). Пероксидный радикал стабилизуется, отрывая подвижный атом водорода от молекулы полимера. При этом вновь образуется полимерный радикал, взаимодействующий с молекулярным кислородом.[3, С.259]

С другой стороны, количество слабых связей может зависеть от последующей обработки готового полимера. В полистироле имеются атомы водорода у чередующихся третичных углеродных атомов главной цепи. Эти водородные атомы более реакционноспособны по сравнению со всеми другими водородными атомами молекулы, и некоторые из них могут окисляться молекулярным кислородом с образованием гидроперекисей при хранении при обычной температуре.[12, С.52]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Труды Л.Х. Мономеры. Химия и технология СК, 1964, 268 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Кноп А.N. Фенольные смолы и материалы на их основе, 1983, 280 с.
5. Амброж И.N. Полипропилен, 1967, 317 с.
6. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
7. Блаут Е.N. Мономеры, 1951, 241 с.
8. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
9. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
10. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
11. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
12. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
13. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
14. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
15. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
16. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
17. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную