На главную

Статья по теме: Молекулярную структуру

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Установлено, что при окислении каучуков происходят два противоположных по своему влиянию на молекулярную структуру процесса: деструкция и структурирование. Соотношение скоростей деструкции и структурирования зависит от структуры каучука и различных условий процесса окисления. Уменьшение концентрации кислорода ведет к уменьшению скорости деструкции натурального каучука и к повышению скорости структурирования. При нагревании в вакууме натуральный каучук, весьма склонный в деструкции, подвергается структурированию11. При окислении дивинилового каучука, наоборот, с уменьшением концентрации кислорода скорость структурирования понижается.[4, С.64]

Вследствие сложности своей молекулярной структуры и ненасыщенности каучуки очень легко изменяют молекулярную структуру под влиянием различных физических факторов — при нагревании, действии солнечных лучей, электрических разрядов, ультразвука, а также под влиянием различных химических веществ. Изменение молекулярной структуры и молекулярного веса неизбежно приводит к изменению физических и технических свойств каучука.[4, С.58]

Интенсивность полосы характеризует концентрацию данных химических групп, поглощающих свет с длиной волны Я, а также молекулярную структуру вещества. Так, наиболее интенсивными в спектре являются пики, отвечающие валентным колебаниям. Различают интенсивность в максимуме поглощения и интегральную интенсивность (площадь под кривой поглощения). Интегральная интенсивность — очень интересная величина, характеризующая молекулярные процессы, однако интенсивность в максимуме проще измерить, и поэтому ею пользуются чаще. Полосы поглощения делят на сильные, средние и слабые в зависимости от[2, С.186]

При вулканизации натрий-дивинилового каучука также происходят одновременно два процесса, противоположных по своему влиянию на молекулярную структуру, но деструктирующее влияние кислорода оказывается незначительным. Вследствие особенности молекулярного строения натрий-дивинилового каучука кислород при вулканизации, так же как и сера, играет главным образом роль структурирующего агента.[4, С.73]

Постоянство условий полимеризации обеспечивает полимеру однородность по структуре макромолекул. Но на практике постоянство основных факторов, определяющих молекулярную структуру полимера, не соблюдается. С этим связана зависимость молекулярных характеристик ПЭВД от типа реактора, в котором проводится полимеризация (рис.7.21) [121].[6, С.141]

При попытке согласовать различные частично неудовлетворительные критерии начала роста трещины серебра с экспериментальными данными Аргон [165—167] и К.ауш [11] предложили модели процесса возникновения трещины серебра, которые учитывают молекулярную структуру, жесткость цепей, конфор-мационные изменения и межмолекулярное взаимодействие. Критерий перехода от области А к области В, предложенный Аргоном, основан на разрыве вогнутых границ раздела воздух— полимер (табл. 9.4). Кауш описал механизм образования зародыша трещины серебра, включающий три стадии:[1, С.377]

Процессы группы Б представляют собой реакции соединения друг с другом большого числа мономерных или олигомерных молекул путем взаимодействия их функциональных групп с образованием линейных, разветвленных или сетчатых структур. Каждый акт взаимодействия этих функциональных групп сопровождается выделением низкомолекулярного продукта (поликонденсация) или в них происходит перестройка атомов и групп атомов в одну устойчивую молекулярную структуру без выделения такого продукта реакции (ступенчатая полимеризация).[3, С.14]

Механизм межфазного взаимодействия в системах полимер — наполнитель весьма сложен и полностью не выяснен, хотя в последнее время эту проблему интенсивно испедуют [3, 4, 59J на примере линейных кристаллических и в меньшей мере аморфных полимеров. В случае эпоксидных полимеров исследование взаимодействия полимер-наполнитель осложняется тем, что, во-первых, подобные материалы образуются в результате отверждения низкомолекулярных олигомеров в присутствии наполнителя, т. е. наполнитель может влиять не только на надмолекулярную, но и на молекулярную структуру полимера, а также на процесс отверждения олигомерного связующего, вступая в химические реакции, с реакционноспособными группами эпоксидных олигомеров отвердителей. Во-вторых, поскольку процесс образования эпоксидного полимера из олигомера и отвер-дителя происходит в присутствии наполнителя, трудно разделить влияние технологических факторов и поверхностные эффекты. Кроме того, образующиеся при отверждении сильносшитые системы неплавки и нерастворимы, что также сильно затрудняет их исследование.[9, С.84]

Подводя итог трех различных статистических аспектов разрушения, можно сказать, что в первом случае (разрушение как статистическое событие) свойство (вероятность разрушения) относится к материальному телу в целом. Во втором случае один дефект, т. е. одна микронеоднородность в теле (из многих) считается доминирующей при его ослаблении. В третьем случае отдельные акты разрушения взаимодействуют и влияют друг на друга, определяя свой дальнейший рост. Тот же самый подход, который был использован здесь для объяснения разброса данных разрушения, мы встретим, например, в теории прочности, опирающейся на механику сплошных сред, механику разрушения и молекулярную структуру.[1, С.66]

Степень регулярности чередования мономерных звеньев можно характеризовать отношением интенсивности поглощения в ИК-спектре валентных колебаний групп СН2, изолированных от групп CF2 другими группами СИ2 (2950 см-'), к интенсивности поглощения колебаний групп СН2, непосредственно примыкающих к группам CF2 (2973 см-1) [10]. Содержание «блоков» (—СН2СН2—)п, где п = 1, 2, 3 и более, можно также оценивать по отношению ннтенсивностей поглощения 773, 733 и 721 см-1, соответствующих этим блокам, к интенсивности поглощения 2973 см-1 всех метиленовых ipynn [32, 35]. Содержание блоков этилена в сополимере тем выше, чем меньше в нем ТФЭ. Содержание строго чередующихся звеньев ТФЭ и Э в сополимере эквимольного состава, полученного при температурах —30 и 65°С, составляет 97 и 93%, а содержание блоков Э с п = 2 — 1,5 и 3,3% соответственно. При содержании ТФЭ выше 55% (мол.) полоса поглощения блоков этилена (п = 2) практически исчезает [32, 35]. Молекулярную структуру чередующегося сополимера ТФЭ — Э можно рассматривать как структуру ПВДФ типа «голова к голове» и «хвост к хвосту».[10, С.117]

Органические красители имеют сложную молекулярную структуру и всегда содержат группы, придающие окраску,— так называемые хромофорные группы: азо-группа (—N=N—), нитро-груп-на (—N02), нитрозо-группа (—N0) и орто- и ия/>а-хиноидные груп-[11, С.501]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Белозеров Н.В. Технология резины, 1967, 660 с.
5. Амброж И.N. Полипропилен, 1967, 317 с.
6. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
7. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
8. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
9. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
10. Пашин Ю.А. Фторопласты, 1978, 233 с.
11. Льюис У.N. Химия коллоидных и аморфных веществ, 1948, 536 с.
12. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
13. Рафиков С.Р. Методы определения молекулярных весов и полидисперности высокомолекулярных соединений, 1963, 337 с.
14. Бовей Ф.N. Действующие ионизирующих излучений на природные и синтетические полимеры, 1959, 296 с.
15. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
16. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
17. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
18. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
19. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
20. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
21. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
22. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
23. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.

На главную