На главную

Статья по теме: Надмолекулярные структуры

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Часто возникает вопрос о том, какую роль в равновесной высокоэластической деформации играют надмолекулярные структуры в виде физических узлов сетки. Для ответа на этот вопрос необходимо учесть, что в некристаллических полимерах (эластомерах) структурные микроблоки упорядоченной структуры имеют флуктуа-ционное происхождение и, следовательно, характеризуются определенным конечным временем жизни. Так, для каучуков.н резин время жизни надмолекулярных образований при 20° С характеризуется временем 102—104 с (Я-процессы), а при повышенных температурах оно намного меньше. Молекулярная подвижность этих флуктуационных структур ответственна за медленный физический релаксационный процесс в эластомерах. Для того чтобы достичь равновесного состояния, практически надо наблюдать за[5, С.60]

В то же время следует иметь в виду, что такое рассмотрение является первым приближением. Исследование структуры полимеров показало, что не только в кристаллическом, но и в аморфном состоянии почти всегда образуются отчетливо выраженные упорядоченные надмолекулярные структуры. Полимерные тела являются четко выраженными гетерогенными (неоднородными) системами. В них имеются границы раздела между структурными образованиями, которые могут являться зародышем трещин. При деформировании полимера возникают процессы, связанные со взаимным перемещением крупных структурных элементов, превращением в другие типы надмолекулярных образований и их •разрушением. В одном и том же объеме полимера одновременно могут сформироваться структуры многих типов. Первичными элементами для образования надмолекулярных структур являются глобулы и пачки. Они могут служить основанием для образования С'олее крупных структурных элементов полимерного тела. Образование глобул аналогично образованию капли жидкости под действием поверхностного натяжения. Полимеры, структурированные в форме глобул, обычно находятся в аморфном состоянии.[2, С.50]

Укрупнение структурных элементов идет по длине. Длина элементарной фибриллы - около 30 нм, а макрофибриллы -2-3 мкм. Видимые в электронном микроскопе надмолекулярные структуры целлюлозы представляют собой частицы со степенью асимметрии 1:10 - 1:15.[1, С.156]

При высоких температурах кристаллизации сферолиты могут вырастать до значительных размеров, так как число зародышей невелико, а скорость роста значительна. Такие надмолекулярные структуры, состоящие из более совершенных кристаллитов, обладают более высоким модулем упругости, отличаются повышенной хрупкостью и значительной оптической анизотропией. По данным Максвелла [1 ], трещины разрушения возникают в таких структурах в межсферолитных областях.[3, С.56]

Одним из примеров удачного использования деформационно-инициированной кристаллизации является создание технологии изготовления жестких эластичных пленок и волокон из полипропилена и полиоксиметилэтиленацетата [32]. Обладающие резиноподобной эластичностью надмолекулярные структуры формируются при экструзии расплава с последующей кристаллизацией в условиях действия высоких растягивающих" напряжений.[3, С.61]

В процессе кристаллизации полимеров из слабоконцентрированных растворов каждая макромолекула участвует в формировании отдельного монокристалла и полностью свободна от взаимодействия и зацеплений с другими макромолекулами. В концентрированных растворах и расплавах полимеров, для которых характерно наличие в одном объеме множества молекулярных клубков, это положение утрачивает силу. Основным морфологическим элементом, из которого формируются надмолекулярные структуры, по-прежнему остается ламель, образованная складчатой цепью, однако наличие зацеплений, затрудняющих пристраивание соседних цепей, приводит к образованию более дефектных и сложных с морфологической точки зрения структур.[3, С.52]

Другой характерной особенностью структурирования при кристаллизации из концентрированных растворов и расплавов полидисперсных полимеров является образование дендритов. Дендри-тами называются трехмерные древовидные структуры, растущие, несмотря на ветвление в радиальном направлении. Ветвление возникает вследствие нестабильной скорости роста, присущей процессу кристаллизации полидисперсных полимеров [20]. Эта нестабильность является следствием градиентов концентрации, появляющихся из-за преимущественной кристаллизации наиболее длинных цепей, для которых значение Т°т выше и которые при температуре кристаллизации как бы подвергаются большему переохлаждению. Появление дендритов приводит к возникновению сферической симметрии. Таким образом, надмолекулярные структуры, образованные кристаллизующимися из расплава полимерами, должны иметь сферические поликристаллические области, образованные дефектными, но явно выраженными ламелями, состоящими из складчатых цепей.[3, С.52]

В последнее время стал актуальным вопрос: какую роль в термодинамике и статистике равновесной высокоэластической деформации играет надмолекулярная организация? Для ответа на него необходимо напомнить, что в некристаллических эластомерах микроблоки упорядоченной структуры имеют флуктуационное происхождение и, следовательно, характеризуются определенным, конечным временем жизни (см. гл.'I). Так, для каучуков и резин время жизни надмолекулярных образований при 20 °С обычно заключено в интервале 102—104 с, а при повышенных температурах становится намного меньше. Молекулярная подвижность этих флуктуационных структур ответственна за медленный физический релаксационный процесс в эластомерах. Для того, чтобы судить о 'достижении системой равновесного состояния, время наблюдения за свойствами эластомера должно превышать время жизни упорядоченных микроблоков. По этой причине для описания свойств равновесного состояния оказывается пригодной модель хаотически переплетенных цепей без прямого учета надмолекулярных структур флуктуационной природы. В то же время, при изучении равновесных состояний частично закристаллизованных эластомеров следует учитывать надмолекулярные структуры, так как в этом случае кристаллические упорядоченные микрообласти суть термодинамически стабильные структуры. Аналогично, существенен учет в наполненных резинах других стабильных структурных единиц — частиц активного наполнителя. В этой главе в соответствии с произведенной «отбраковкой» в основном рассматриваются термодинамические свойства ненаполненных и незакристаллизованных эластомеров, так как природа высокоэластической деформации более сложных структур остается той же, но расчет высокоэластических напряжений сильно усложняется.[4, С.106]

Определения ф Надмолекулярные структуры полимеров ф Структура кристаллических полимеров ф Структурные изменения в полимерах ф Жидкокристаллические структуры полимеров[5, С.18]

Все рассмотренные выше надмолекулярные структуры полимеров, начиная с упорядоченных структур ближнего порядка (домены, кластеры) и кончая совершенными монокристаллами, в которых реализуется трехмерный дальний порядок, формируются в основном в условиях доминирующего влияния теплового движения. При наложении внешних деформирующих напряжений надмолекулярная структура будет изменяться и полимер будет переходить в особое состояние — ориентированное.[10, С.64]

Пачки полимерных цепей — это простейшие первичные надмолекулярные структуры, существование которых наблюдается у нскри-сталлизующихся и у кристаллизующихся полимеров. Пачка цепей — это статистическое образование, аналогичное упорядоченным группам молекул в низкоыолекулярной жидкости. Это и отличает пачку цепей от мицеллы, несмотря па то, что вследствие большой протяженности цепей пачки могут существовать значительно дольше роя молекул в ннзкомолекулярной жидкости.[9, С.144]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
3. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
4. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
5. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
6. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
7. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
8. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
9. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
10. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
11. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
12. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
13. Бартенев Г.М. Физика полимеров, 1990, 433 с.
14. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
15. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
16. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
17. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
18. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
19. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
20. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
21. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
22. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
23. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
24. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
25. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
26. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
27. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
28. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
29. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
30. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
31. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
32. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
33. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
34. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
35. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
36. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
37. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
38. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
39. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
40. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
41. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
42. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
43. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
44. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
45. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
46. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
47. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
48. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
49. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную