На главную

Статья по теме: Ограничение подвижности

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Это ограничение подвижности в значительной мере наследуется и полимерными кристаллами с мерностью 1, которые .либо очень малы именно в направлении оси с (складчатые кристаллы, см. ниже), либо тоже имеют мозаичное строение, либо, если цепи распрямлены, кристаллы проявляют тенденцию к дроблению на более тонкие кристаллики типа монокристаллических «усов».[3, С.92]

Эти явления могут быть объяснены следующим образом. Ограничение подвижности цепей на поверхности раздела вызвано двумя причинами. Первая уже детально рассматривалась при обсуждении изменений Тс. Это адсорбционное взаимодействие макромолекул или их агрегатов с поверхностью (энергетическое взаимодействие). Оно накладывает определенные ограничения на подвижность цепей. Другая причина может носить чисто энтропии-[8, С.106]

Вернемся еще раз к допущению о закрепленности концов цепи. В реальных расплавах упоминавшееся ограничение подвижности, обгоняемое кристаллизацией, связано с зацеплениями, а после того как кристаллизация началась, многие цепи уже на самом деле входят разными концами в разные зародыши, что полностью оправдывает принятую модель. В ходе кристаллизации исчерпываются конформационные степени свободы, и оставшиеся натянутые проходные цепи уже не могут ни сложиться, ни войти в зародыш КВЦ.[3, С.102]

Данные, полученные при исследовании релаксационных процессов, протекающих в наполненных полимерах (см. гл. III), показывают, что в присутствии" наполнителя происходит некоторое ограничение подвижности молекул полимера в поверхностном слое на границе раздела, обусловленное взаимодействием молекул с поверхностью наполнителя. Совершенно очевидно, что поскольку при этом происходит изменение распределения межмолекулярных сил, то оно отражается на плотности упаковки макромолекул.[8, С.17]

Использование на первой стадии протолиза алкилалюминийдихлорида обеспечивает легкость и направленность реакции, отсутствие выделения НС1 (как в случае А1С13 [162]) и возможность синтеза продуктов с требуемым соотношением групп SO3H и SO3A1C12. Ограничение подвижности указанных групп, связанных с полимерной подложкой, обусловливает более высокую термостабильность катализаторов (в интервале 70-100°С, в зависимости от соотношения групп) по сравнению с модельными низкомолекулярными соединениями - HSO4A1C12 и CH3C6H4SO3A1C12 (50 -*• 60°С). Комплексный характер иммобилизованной кислоты доказывается тем, что для возбуждения полимеризации изобутилена, сополи-меризации его с винилсилиловыми эфирами, ионного гидрирования олигомеров изобутилена (согласно схеме 2.2) необходимо присутствие в катализаторе группировок двух типов - SO3H~ и SO3A1C1~2, оптимальное соотношение которых составляет от 4 до 10 [169-172]. Индивидуальные сульфокислоты в Н+-или Naf-формах или сульфополикислоты с полностью замещенными на SO3A1C12 сульфо-группами не проявляли активности в условиях эксперимента. Этот вывод согласуется с поведением модельных соединений: активностью HSO4A1C12 (содержит группы обоих типов) и инертностью C1SO3A1C12. Сольватирующая функция ароматических углеводородов в иммобилизованном катализаторе следует из вдвое более высокого значения экзотермического теплового эффекта (0,27 кДж/кг носителя, 25°С) на второй стадии вышеприведенной схемы для системы сульфока-тионит КУ-2-8 с SO3H~ и SO3A1C1~2 группами - 1,3,5-триметилбензол в сравнении с аналогичной системой и катионитом в Н-форме [166].[5, С.65]

Этот принцип, берущий свое начало от чисто химических опытов по обнаружению уловленных радикалов, упомянутых в § 4, основан на ограничении подвижности крупных органических свободных радикалов при переходе системы из структурно-жидкого в стеклообразное состояние или при фазовом переходе (кристаллизации). Ограничение подвижности может проявиться двояко: либо в невозможности рекомбинации (так называемый гель-эффект-т-см. [18] — был лишь первым эффектом, где прямым образом удалось наблюдать иммобилизацию свободных радикалов), либо, поскольку обычно в качестве ЭПЗ выбираются неактивные, т. е. неспособные к рекомбинации или диспропорцио-нированию радикалы, в сдвигах и изменениях формы линий ЭПР.[1, С.280]

Поскольку положение Тс связано с возникновением подвижности цепей, то полученные данные указывают на то, что образование адсорбционных связей между полимерными молекулами и поверхностью и конформационные изменения на границе раздела фаз приводят к изменению релаксационных свойств полимера. Повышение Тс указывает на заметное ограничение подвижности цепей, эквивалентное снижению их гибкости в результате образования дополнительных связей или изменения конформации макромолекул. Это ограничение подвижности (и следовательно повышение Тс) должно быть тем больше, чем большее число молекул полимера принимает участие во взаимодействии с поверхностью.[8, С.90]

Мы видим, что введение наполнителей в полимеры приводит к существенному возрастанию eft и Vh. Рассмотрим, как можно объяснить эти результаты. Возрастание е„ с увеличением содержания твердой фазы в системе свидетельствует об увеличении энергии, необходимой для проявления сегментальной подвижности при переходе из стеклообразного в высокоэластическое состояние, что указывает на ограничение подвижности макромолекул в граничном слое. С другой стороны, повышение Vh связано с более рыхлой упаковкой полимерных цепей в граничном слое по сравнению с их[7, С.167]

Можно ПОПУСТИТЬ, что потем же поичиням ягпегяты MOWKVTI или пп\г. гие надмолекулярные структуры будут менее плотноупакованными. Чем больше поверхность наполнителя, тем больше ограничивается подвижность цепей уже в ходе формирования поверхностного слоя, и тем рыхлее упаковка в нем макромолекул. После завершения процесса формирования материала, когда агрегаты и молекулы, более рыхлоупакованные, связаны с поверхностью, основное влияние на свойства имеет уже ограничение подвижности молекул, входящих в поверхностный слой.[7, С.164]

Это специфическая черта полимеров, а именно, сильные межмолекулярные взаимодействия между полимерными молекулами ведут к распространению эффекта влияния поверхности в объем. Фактически можно рассматривать участие молекулярных агрегатов или других надмолекулярных структур во взаимодействии с поверхностью. Вывод о том, что в актах взаимодействия принимают участие не изолированные молекулы, а их агрегаты, объясняющий дальнодействие поверхности, следовал также из наших исследований адсорбции. Ограничение подвижности хотя бы одной молекулы агрегата ведет к изменению поведения всех молекул данного агрегата.[7, С.182]

Данные этих и многих других работ, несмотря на большой разброс, а в некоторых случаях и противоречивые результаты, позволяют сделать заключение, что при наполнении происходит уменьшение плотности полимера и разрыхление его структуры, которое сопровождается повышением температуры стеклования и уменьшением подвижности цепей. Эти наблюдения находятся в противоречии с данными о повышении температуры стеклования полимеров при увеличении плотности полимера под действием гидростатического давления [63] и в настоящее время трудно объяснимы. Если бы происходило ограничение подвижности молекул около поверхности наполнителя, которое не может распространяться равномерно на всю массу полимера, следовало бы ожидать появления двух температур стеклования, как это характерно для двухфазных систем, или, по крайней мере, значительного расширения области стеклования. Однако этого обычно не наблюдается.[4, С.88]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
2. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
3. Бартенев Г.М. Физика полимеров, 1990, 433 с.
4. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
5. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
6. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
7. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
8. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
9. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
10. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
11. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.

На главную