На главную

Статья по теме: Органических полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Для понимания фундаментальных отличий органических полимеров от злементорганических и неорганических необходимо рассмотреть электронные структуры главных цеп-ей [24, т. 2, с. 363— 371;.25, гл. II]. Как известно, углерод занимает в таблице Менделеева особое положение, определяемое способностью к образованию чисто ковалентных связей за счет неспаренных электронов. На языке квантовой механики это означает чисто обменное взаимодействие между валентными электронами смежных С-атомов. Элементы слева от IV группы образуют донорно-акцепторные связи М«—L за счет вакантных орбиталей атома М, а справа от IV группы— дативные связи M->L (за счет неподеленных пар атома М). При образовании подобных гетероатомных связей возникает выраженная их поляризация, т. е. смещение электронной плотности между донором и акцептором электрона или неподеленной пары. Строго говоря, поляризация возникает уже в гетероцепных органических полимерах и может быть усилена или ослаблена за счет боковых радикалов.[2, С.19]

Впервые на существование этой связи в случае неорганических материалов обратил внимание Кауцман. Для органических полимеров позже соответствующую зависимость получил Бимен. Почти одновременно с ним аналогичное соотношение получил Бойер,, который отмечал, что Т0 для определенной группы полимеров пропорциональна кинетической энергии движения их сегментов. Так-как Гпл равна отношению изменения энтальпии -ДЯ и энтропии AS (зависящей от симметрии и гибкости цепей), можно заключить, что Гпл и Гс линейно связаны со свойствами полимеров. Они зависят также от времени измерения температуры и от скорости[3, С.272]

В последние два десятилетия интенсивно развивается новая область химии высокомолекулярных соединений — синтез и исследование органических полимеров, основная цепь которых представляет собой систему сопряженных кратных связей, в частности связей C = N. Интерес к подобным полимерам объясняется некоторыми их специфическими свойствами, такими, как термостойкость, электропроводность, каталитическая активность в ряде реакций и др., которые открывают полимерам такого рода определенные перспективы практического применения.[4, С.158]

Термическая устойчивость полисилоксанов наглядно иллюстрируется сопоставлением степени их термической деструкции и термической деструкции органических полимеров. На рис. 120 приведены результаты измерения потери веса полисилокса-на и линейного полиизопрена в процессе их теплового старения.[1, С.475]

Для неогранических полимеров (стекол) область размягчения, определенная по аномальному изменению длины образцов, составляет около 100 К [10.3]. Для органических полимеров она обычно несколько меньше [10.4]. Условно данный переход характеризуется некоторой температурой, называемой соответственно температурой стеклования Тс или температурой размягчения Тр, определенным образом выбранной в интервале перехода. При исследовании линейного или объемного расширения полимеров эта температура определяется по пересечению прямолинейных отрезков.[3, С.262]

Полимерными соединениями, или полимерами, называют вещества, молекулы которых состоят из многочисленных элементарных звеньев одинаковой структуры. Элементарные структурные звенья соединены между собой ковалентными связями в длинные цепи линейного или разветвленного строения или же образуют эластичные или жесткие пространственные решетки. Своеобразно построенные, гигантские по размерам молекулы полимерных соединений обычно называют макромолекулами. Основная цепь макромолекул органических полимеров состоит из атомов углерода, иногда с чередованием атомов кислорода, серы, азота, фосфора. В макромолекуляр-ную цепь могут быть введены атомы кремния, титана, алюминия и других элементов, не содержащихся в природных органических соединениях.[1, С.9]

В пределах органических полимеров гомоцепные именуются карбоцепнымн.[2, С.19]

Как показали наши исследования, методы, обычно применяемые для установления элементного состава большинства органических полимеров [1, 2], не подходят для анализа полинитрилов общей формулы |/~(?=г"г'' | ,гдеК — алифатический[4, С.158]

Химическое взаимодействие полимеров с кислородом лежит » основе реакций окисления и окислительного разрушения органических полимеров. Сам процесс окисления может ускоряться и активнее развиваться под действием многих факторов: теплового (термоокислительное старение), солнечного света, излучений (световое, радиационное старение), солей металлов переменной ва-[5, С.256]

Учитывая малое значение механических потерь 6Qs по сравнению со свободной поверхностной энергией полимера а, положим для оценок а0*=а. Для полиметилметакрилата (ПММА) наиболее надежные измерения свободной поверхностной энергии дают а = = 3,9-10~2 Дж/м2. Для органических полимеров значение Км имеет[3, С.312]

Десять лет, прошедших с момента выхода в свет второго издания книги, отмечены дальнейшим развитием химии высокомолекулярных соединений. Изучены механизмы некоторых реакций синтеза полимеров, выявлены новые свойства и возможности уже известных полимеров, синтезирован ряд новых полимеров. Интенсивно развивалась химия карбоцепных полимеров, получаемых путем термического разложения органических полимеров. Замечательны успехи химии биологически активных полимеров — биополимеров. Все это нашло отражение в новом издании книги. Пересмотрены и дополнены новыми данными все разделы, посвященные методам синтеза полимеров; особенно это коснулось ионной полимеризации, полимеризации, инициированной ион-радикалами и переносом электрона, и циклополимеризации. В главе «Превращение циклов в линейные полимеры» заново написан раздел «Ионная полимеризация циклов». Новыми данными пополнен раздел «Химические превращения полимеров». Значительно расширена последняя часть книги: «Краткие сведения об отдельных представителях высокомолекулярных соединений». Здесь особое внимание уделено термостойким полимерам, которые приобрели чрезвычайно важное техническое значение и химия которых особенно успешно развивалась и совершенствовалась. В этом издании значительно большее внимание по сравнению с предыдущим уделено успехам в синтезе биологически активных полимеров: белков и нуклеиновых кислот. Из нового издания книги исключен раздел «Основы физикохимии высокомолекулярных соединений», так как в настоящее время имеется ряд книг, специально посвященных этим вопросам.[6, С.10]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Иванов В.С. Руководство к практическим работам по химии полимеров, 1982, 176 с.
5. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
6. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
7. Кноп А.N. Фенольные смолы и материалы на их основе, 1983, 280 с.
8. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
9. Сёренсон У.N. Препаративные методы химии полимеров, 1963, 401 с.
10. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
11. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
12. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
13. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
14. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
15. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
16. Андрианов К.А. Технология элементоорганических мономеров и полимеров, 1973, 400 с.
17. Бартенев Г.М. Физика полимеров, 1990, 433 с.
18. Башкатов Т.В. Технология синтетических каучуков, 1987, 359 с.
19. Беднарж Б.N. Светочувствительные полимерные материалы, 1985, 297 с.
20. Калинина Л.С. Анализ конденсационных полимеров, 1984, 296 с.
21. Малышев А.И. Анализ резин, 1977, 233 с.
22. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
23. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
24. Фихтенгольц В.С. Атлас ультрафиолетовых спектров поглощения веществ, применяющихся в производстве синтетических каучуков, 1969, 189 с.
25. Пашин Ю.А. Фторопласты, 1978, 233 с.
26. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
27. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
28. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
29. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
30. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
31. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
32. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
33. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
34. Алмазов А.Б. Вероятностные методы в теории полимеров, 1971, 152 с.
35. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
36. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
37. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
38. Семенович Г.М. справочник по физической химии полимеров том 3, 1985, 592 с.
39. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
40. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
41. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
42. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
43. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
44. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
45. Бажант В.N. Силивоны, 1950, 710 с.
46. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
47. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
48. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
49. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
50. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
51. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
52. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.

На главную