На главную

Статья по теме: Ориентационной кристаллизации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Вопрос о наличии КВЦ в полимерах, закристаллизованных из деформированных расплавов, является одним из самых принципиальных для ориентационной кристаллизации. Прямые наблюдения КВЦ в таких полимерах отсутствуют. Наличие высокотемпературного эндотермического пика в термограммах образцов представляется довольно убедительным аргументом в пользу существования КВЦ. Однако самое убедительное свидетельство наличия «каркаса» из КВЦ — неизменность модуля упругости и размеров образцов при нагревании почти до Тпл КВЦ [79]. В обычных ориентированных образцах модуль резко падает при нагреве до температур близких к Тпл КСЦ, причем сами образцы сокращаются в 20—30 раз — в зависимости от исходной вытяжки. По-видимому, полимеры, получающиеся в результате ориентационной кристаллизации в условиях значительного разворачивания макромолекул, можно рассматривать, как «самоармированные» системы, в которых КВЦ играют роль жесткого наполнителя (см. рис. 1.15, г). Их присутствием объясняют высокие модуль упругости и прочность в аксиальном направлении, а также небольшое удлинение до разрыва.[6, С.61]

Концепция топоморфизма была впервые введена в работе [55] ; затем мы ее широко использовали в соавторстве, особенно при анализе ориентационной кристаллизации (см., напр., [33, 56]).[3, С.100]

Во избежание недоразумений еще раз подчеркнем, что р на топограмме непосредственно связывается с предварительным растяжением расплава только при ориентационной кристаллизации (гл. XVI). В целом же топограмма характеризует тип кристаллизации, зависящий не от внешних, а от молекулярных факторов — степени развернутости цепей по любым причинам — из-за М, жесткости, кинетического отбора и т. п.[3, С.109]

Как правило, цепи в кристаллитах, возникших при растяжении, ориентированы преимущественно вдоль оси растяжения. Такая ориентация особенно типична для процессов кристаллизации при очень больших деформациях*. Морфология, возникающая при ориентационной кристаллизации, этим и отличается от обычной кристаллической текстуры, которая получается при постепенном охлаждении и характеризуется беспорядочным распределением ориентации кристаллитов. При включении части деформированной цепи в кристаллит среднее напряжение, которое она испытывает на концах, уменьшается. Это заключение[5, С.170]

Прочность и модуль волокон из простых и смешанных пара-ароматических полиамидов без особых ухищрений сразу получаются соответственно «2—5 и « 100—150 ГПа. Однако, так же, как и суперволокна из малополярных полимеров, полученные с помощью (правильно проведенной!) ориентационной вытяжки или ориентационной кристаллизации, они обладают одним существенным дефектом: их прочность в поперечном направлении ничтожна по сравнению с продольной. Волокна и пленки претерпевают сильную фибриллизацию, т. е. самопроизвольно или при деформации (особенно кручении) распадаются на чрезвычайно тонкие фибриллы, которые при дальнейшей деформации образуют еще более тонкие линейные монокристаллы типа «усов», столь хрупкие, что манипулирование ими практически невозможно. Они обнаружены уже достаточно давно, но детально до сих пор не исследованы. По-видимому, именно они образуют упоминавшийся каркас в ориентационно закристаллизованных волокнах.[3, С.389]

Отметим неравноправность правой и левой ветвей диаграммы. При сохранении неизменной длины за счет внешней нагрузки коллагеновое волокно сохраняет, в основных чертах, вид рентгенограммы. При растяжении сократившегося волокна до начальной длины, снова, в общих чертах восстанавливается исходная рентгенограмма (аналог ориентационной кристаллизации для спиральных цепей, стабилизированных водородными связями!) Правая же ветвь содержит в себе необратимости того же характера, что связанные с «магическим четырехугольником» на фазовой диаграмме для КВЦ и КСЦ.[3, С.328]

Продольному течению противодействуют силы поверхностного натяжения и обратимые компоненты деформации; поэтому реализовать его возможно лишь во вполне определенном диапазоне скоростей растяжения и температур. В кристаллизующихся полимерах осуществить продольное течение можно лишь при высоких температурах (выше температуры плавления) ji обычно это течение приводит к ориентационной кристаллизации (см. гл. VI).[2, С.7]

В полимерах ситуация совершенно аналогична. Основную ячейку образует одно звено, или часть звена, или небольшое число звеньев смежных цепей, а большую — сам кристаллит толщины /. Поскольку в парафинах температура плавления растет с /, в реальных кристалло-аморфных полимерах, имеющих строение типа рис. III. 3, Тпл тоже должна возрастать, достигая максимума для монокристаллов КВЦ или непрерывного каркаса из КВЦ, получающегося при ориентационной кристаллизации.[3, С.97]

Другой типичный пример генерирования по-биологическому (и, следовательно, генетически, управляемому и, следовательно, практически «безэнергетическому») механизму, но развивающийся уже за пределами живого организма — образование натурального шелка или паутины в естественных условиях. В некоторых деталях этот процесс был рассмотрен в работе [5]. Имитация этого процесса в лабораторных условиях явилась толчком к развитию сотрудниками автора этой главы концепции ориентационной кристаллизации.[3, С.382]

По-видимому, этих осложнений удалось бы избежать при одноосной ориентации ^.-Р-полимеров, кристаллизуя их из смек-тического состояния с вытянутыми цепями. Как явствует из гл. XV, из термотропных полимерных жидких кристаллов вряд ли можно столь же просто получить волокна, как из лиотроп-ных; причина тому — топоморфизм и связанные с ним кажущиеся необратимости. Переход к выгодным топомерам надо совершать так же, как и в случае обычных гибкоцепных полимеров, т. е. используя принципы ориентационной кристаллизации или вытяжки (еще в жидкокристаллическом состоянии).[3, С.389]

В последнее время были развиты методы растворной полимеризации для получения чередующихся (альтернантных) сополимеров [16]. Такой подход к проблеме сополимеризации позволяет получить полимеры принципиально новой структуры и, возможно, избежать проблем, связанных с композиционной неоднородностью сополимера. Альтернантные сополимеры бутадиена с нитрилом акриловой кислоты уже выпускаются в промышленном масштабе. Показано, что в том случае, когда эти сополимеры содержат звенья бутадиена в транс-конфигурации, полимерные цепи способны к ориентационной кристаллизации [17, 18]. Для получения резин с оптимальными физико-механическими свойствами необходимо получение альтернантных сополимеров с достаточно высокой молекулярной массой ([г\] = 2—2,5).[1, С.63]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Физика полимеров, 1990, 433 с.
4. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
5. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
6. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
7. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.
8. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.
9. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
10. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную