На главную

Статья по теме: Параметра растворимости

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Широкий температурный диапазон проявления эластических свойств обусловливается большой гибкостью макромолекул цис-1,4-полидиенов и низким межмолекулярным взаимодействием [13, с. 73—77], которое можно оценить значениями параметра растворимости 34 МДж/м3, аморфностью этих эластомеров в обычных условиях эксплуатации и в то же время способностью цис-1,4-полн-изопрена и чы<>1.4-полибутадиена, вследствие их стереорегуляр-ности, к кристаллизации.[1, С.225]

Обусловлено это тем, что именно в случае эластомеров высокая термодинамическая гибкость изолированных макромолекул сочетается со сравнительно малым межмолекулярным взаимодействием в полимере. Количественным выражением этого взаимодействия является плотность энергии когезии — величина, в случае жидкости численно равная энергии, необходимой для испарения 1 см3 вещества. Величина энергии когезии или непосредственно с ней связанного параметра растворимости 6 (см. стр. 33) является важной характеристикой полимера, от которой в значительной мере зависят способность его растворяться в тех или иных средах, степень совместимости полимеров друг с другом и с пластификаторами, температура стеклования, газо- водопроницаемость и целый ряд других свойств.[1, С.41]

Квадрат параметра растворимости представляет собой плотность энер-икогезии жидкости, т.е. величину энергии когезии, деленную на мольный ъем:[2, С.327]

Экспериментальные методы определения параметра растворимости 6 заключаются в следующем. Измеряется величина характеристической вязкости т| полимера в наборе растворителей, которые обладают различными значениями параметра растворимости. Далее строятся зависимости т) полимера от параметра 8 растворимости того растворителя, в котором они были измерены.[2, С.330]

Рис.90. Схематическое изображение зависимости характеристической вязкости [ц] полимеров в разных растворителях от параметра растворимости растворителя 5 Schematic representation of dependence of intrinsic viscosity [t|] of polymers in different solvents on solubility parameter of solvent 5p[2, С.330]

Другим экспериментальным методом оценки величины 5 является изменение равновесной степени набухания с последующим построением зависимости этой величины от параметра растворимости жидкости, в парах которой измерялось набухание. Эта зависимость аналогична изображенной на рис.90. Следует отметить, что экспериментальные методы определения 5 трудоемки и не всегда надежны. Для предварительной оценки 5 предпочтение можно отдать расчетным методам.[2, С.330]

Процедура оценки растворимости полимера заданного химического строения в том или ином растворителе, согласно изложенным выше представлениям, заключается в следующем. Для данного полимера и растворителя рассчитываются величины параметра растворимости 5 по формуле (331). Затем для полимера рассчитывается величина поверхностной энергии уп по формуле (389) или (399, 400). Можно также рассчитать уп с помощью парахора по формуле (372). Необходимый для этого мольный объем повторяющегося звена полимера определяется как[2, С.342]

Остальные особенности, присущие каждой из диаграмм, хорошо видны на соответствующих рисунках. Имея эти диаграммы, можно прогнозировать возможность получения полимеров, которые обладали бы необходимой совместимостью одного из нескольких свойств. Например, если нужно получить полимеры с параметром растворимости 5 = 10 (кал/см3)1'2 и с Tg ~ 300 °С, то это сделать легко, поскольку точка, соответствующая этим координатам, попадает в наиболее плотную часть диаграммы рис. 107,6. Если же требуется получить полимер, у которого при том же значении параметра растворимости температура стеклования Tg была бы ~ 500 °С, то это сделать труднее, а при Tg = 600 °С нереально, поскольку точка, соответствующая этим координатам, выходит за границы области совместимости. Такой анализ легко может быть проделан для любой из представленных в работе [23] диаграмм, а также из их совокупности, что позволяет прогнозировать возможность получения полимеров с комплексом заданных свойств. Естественно, что если такие диаграммы построить с помощью ЭВМ-программы, согласно которой полимер "конструируется" из мельчайших "заготовок", области совместимости полимеров существенно пополнятся точками, отображающими свойства огромного числа полимеров.[2, С.424]

Для сополимеров уравнение для расчета параметра растворимости запи-ывается в виде[2, С.331]

С помощью соотношения (382) можно получить зависимость, связывающую величину параметра растворимости с поверхностным натяжением. Для этого воспользуемся соотношением (331), по которому рассчитывается параметр растворимости 6. Сначала преобразуем соотношение (381), ум-[2, С.360]

Поскольку левая часть критерия больше правой части, это означает, что поливинилметиловый эфир не "растворяет" полистирол. Поэтому, когда ПС вводится в ПВМЭ, следует ожидать микрофазовое расслоение. Однако, поскольку ПС является "растворителем" для ПВМЭ, часть ПВМЭ будет совмещаться с ПС. В результате могут образовываться две микрофазы, одна из которых содержит ПВМЭ, а вторая смесь ПВМЭ с ПС. При возрастании концентрации ПВМЭ во второй микрофазе совместимость этой микрофазы с ПВМЭ будет улучшаться и при определенной концентрации ПВМЭ вторая микрофаза будет совместима с ПВМЭ. Определим эту критическую концентрацию ПВМЭ. С этой целью запишем соотношение для расчета параметра растворимости данной смеси полимеров. На основе уравнения (331) получаем[2, С.378]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
3. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
4. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
5. Барштейн Р.С. Пластификаторы для полимеров, 1982, 197 с.
6. Серков А.Т. Вискозные волокна, 1980, 295 с.
7. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
8. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
9. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
10. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
11. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
12. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
13. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
14. Аскадский А.А. Химическое строение и физические свойства полимеров, 1983, 248 с.
15. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
16. Нестеров А.Е. Справочник по физической химии полимеров Том1, 1984, 375 с.
17. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
18. Липатов Ю.С. Справочник по химии полимеров, 1971, 536 с.
19. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную