На главную

Статья по теме: Плотности полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

По мере возрастания температуры происходит постепенное изменение соотношения кристаллической и аморфной фаз. Снижение степени кристалличности высокомолекулярных соединений выражается в изменении плотности полимеров. На рис. 20 показано, как влияет повышение температуры полиэтилена на степень его кристалличности, определяемую по изменению плотности полимера. Резкое изменение характера кривой удельного веса в конце процесса (точка А) совпадает с быстрым уменьшением степени кристалличности и переходом полимера в аморфное состояние. Переход в аморфную фазу сопровождается скачкообразным изменением всех свойств полимера, в том числе его удельного объема (рис. 21).[1, С.52]

В процессе эксперимента снимают температурные зависимости проницаемости е' и потерь tg б при разных частотах (например, 50 Гц, 10 кГц, 1 МГц...). По этим данным для разных температур строят частотные зависимости е' и tg б. Если d0/d « 1 и Т0/Т л; 1, то-коэффициент &т можно не учитывать. Условие do/d « 1 справедливо практически всегда, поэтому изменением плотности полимеров, находящихся в электрических полях, обычно пренебрегают. На практике в самом деле То/Т » 1, ибо Т0 обычно выбирают равной комнатной (20 °С), а Т берут близкой к ней,;, затем вычерчивают зависимости приведенной проницаемости епр от приведенной частоты lg v при разных температурах. График кривой е„р = / (lg v) при температуре приведения переносят на прозрачную бумагу. Далее приведение производят перемещением кривых параллельно оси lg v до совпадения их с обобщенной кривой, которая в диапазоне приведения остается неизменной. Для кривых при температуре приведения Т0 и температуре Т характерна определенная разность температур (Т—Т0) и разность частот Igvi — lgv=lg&T. Величина lg 6Т определяет смещение каждой кривей е'т вдоль оси Igv до кривой при температуре приведения Т0. При этом нужно учитывать знаки lg йт: если смещение происходит вправо, то lgbr>0; если влево — отрицателен. Аналогично строят зависимости 8пр = е'пр (lg V)*.[2, С.242]

Определение плотности полимеров 123-[3, С.123]

Уравнения (14) и (15) можно использовать для получения соотношений, описывающих температурные зависимости плотности полимеров р в стеклообразном и высокоэластическом состояниях. Для этого подставим (14) и (15) в уравнение (6):[5, С.48]

Наиболее важными методами изучения структуры полимеров являются рентгенография (электронография) и электронная микроскопия. Большое значение имеют методы двойного лучепреломления и определения плотности полимеров.[3, С.99]

На процесс кристаллизации значительное влияние оказывает молекулярная масса полиэфира. По данным дилатометрии [46], по мере повышения молекулярной массы склонность полимера к кристаллизации падает. Такой вывод можно сделать и из результатов измерения плотности полимеров с разной молекулярной массой (рис. 5.12).[6, С.114]

Плотность аморфного полипропилена, определенная при помощи инфракрасной спектроскопии [27], составляет 0,8500 или 0,8515 г/см3 [28], в зависимости от используемого метода расчета. Значение плотности полностью кристаллического полимера можно найти рентгенографическим методом, определив размеры элементарной ячейки кристалла. Натта [27] приводит плотность полностью кристаллического полипропилена 0,9360 г/см3. Для измерения плотности полимеров можно использовать флотационный метод. [29] или метод электромагнитного поплавка [30, 31]. Последний целесообразно применять в случае волокнистых материалов, так как на поверхности волокон образуются воздушные пузырьки.[4, С.70]

Определение плотности полимеров проводят пикнометрическим или флотационным методом [101],[8, С.90]

Типичный дилатометр, использующийся для измерения плотности полимеров, показан на рис. 31.4. Увеличение или уменьшение объема с температурой определяют регистрацией изменения уровня ртути в капилляре дилатометра. Точность этого метода составляет ±0,001 г/см3.[9, С.145]

Образование полимерных соединений сопровождается, как известно, всегда уменьшением объема или увеличением плотности. Плотности полимеров обычно находятся в пределах от 0,9 до 2,2, в то время как плотности большинства мономеров лежат между 0,7 — 1,2. Первой причиной уменьшения объема является возникновение химической связи между молекулами мономеров. Изменение на один моль объема, вызванное этой причиной, должно мало отличаться для различных мономеров. То обстоятельство, что фактическое изменение молярных объемов при полимеризации сильно разнится для различных веществ, указывает, что существуют и иные причины изменения объема.[14, С.66]

Наиболее важными методами изучения структуры полимеров являются рентгенография (электронография) и электронная микроскопия. Большое значение имеют методы двойного лучепреломления и определения плотности полимеров.[10, С.99]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
4. Амброж И.N. Полипропилен, 1967, 317 с.
5. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
6. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
7. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
8. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
9. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
10. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
11. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
12. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
13. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
14. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
15. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
16. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.

На главную