На главную

Статья по теме: Полиэтилен полученный

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Полиэтилен, полученный при высоком давлении, имеет наименее регулярное строение. В условиях высокой температуры, при которой осуществляется этот процесс, значительную роль играют реакции передачи цепи, связанные с отрывом атомов водорода, приводящие к образованию многочисленных ответвлений в макромолекулах.[1, С.205]

Регулярность структуры. Кристаллизоваться могут только такие полимеры, молекулы которых построены регулярно. В гомопо-лимерах может возникнуть нерегулярность за счет разного пространственного расположения заместителей. Поэтому к кристаллизации способны только стереорегулярные полимеры. Чем больше нарушений регулярности в полимере, тем меньше содержание его кристаллической части. В таких промышленных полимерах, как полистирол или полиметилметакрилат, заместители расположены нерегулярно, эти полимеры аморфны и не содержат кристаллической части. Поливинилхлорид содержит сильно полярные атомы хлора, которые взаимно отталкиваются и поэтому значительная часть макромолекул поливинилхлорида построена относительно регулярно даже при получении полимера методом эмульсионной полимеризации. Поэтому поливинилхлорид частично кристаллизуется. В полиэтилене нет заместителей, поэтому полиэтилен мог Оы быть идеально кристаллическим. Однако в условиях синтеза в макромолекулах его возникают разветвления, которые нарушают регулярность, и это приводит к снижению степени кристалличности в тем большей степени, чем больше разветвлений. Так, полиэтилен, полученный путем разложения диазометана (так называемый полиметилен), является полностью линейным. Степень кристалличности достигает в нем 95%. Полиэтилен высокой плотности, полученный на катализаторах Циглера — Натта, разветвлен в большей степе-[3, С.182]

Полиэтилен, полученный по методам Циглера и Филлипса, имеет строго линейное строение и соответственно большую плотность, более высокие кристалличность и температуру плавления, чем полиэтилен, полученный при высоком давлении.[4, С.304]

Необхоцимо отмстить, что полиэтилен, полученный с титановым катализатором, имеет высокую плотность и малую степень разветвления. Свойства полиэтилена, полученного при высоком давлении в присутствии свободных радикалов, колеблются в широком диапазоне: ст почти линейного продукта высокой плотности [109А] до сильно разветвленного полимера низкой плотности [13, 14] (в зависимости от условий полимеризации).[5, С.198]

Указанные особенности оказывают влияние на структуру и свойства полиэтилена, которые в зависимости от типа реактора несколько различаются. Полиэтилен, полученный в трубчатом реакторе, имеет большую: разветвленность и меньшую полидисперсность, чем полученный в автоклавном реакторе. Этот полиэтилен более пригоден для производства пленок, тогда как полиэтилен, полученный в автоклавном реакторе, находит широкое применение в производстве покрытий. Подробно зависимость структуры и свойств полиэтилена от параметров полимеризации рассмотрена в гл. 7.[6, С.30]

ПЭВД — полиэтилен, полученный при высоком давлении[8, С.4]

ПЭНД — полиэтилен, полученный при низком давлении[8, С.4]

ПЗСД — полиэтилен, полученный при среднем давлении[8, С.4]

Структура полиэтилена как низкого, так и среднего давления отличается незначительной разветвленностью, поэтому его кристалличность значительно выше (75—90%), чем у полиэтилена высокого давления. В связи с этим полиэтилен низкого и среднего давления имеет более высокую плотность, теплостойкость и прочность. Более высока, сравнительно с полиэтиленом высокого давления, и молекулярная масса—80000—500000. Кроме того, полиэтилен, полученный при низком и среднем давлении, обладает большей стойкостью к действию органических растворителей и[8, С.80]

Известно, например, что полиэтилен, полученный полимеризацией при низком давлении в присутствии комплексных металло-органических катализаторов, обладает значительно большей прочностью, чем полиэтилен, полученный при высоком давлении. Это связано с тем, что макромолекулы полиэтилена высокого давления имеют сравнительно большое количество разветвлений, в то время как полиэтилен низкого давления почти не разветвлен.[9, С.204]

Тун [43] применил метод дробного осаждения для фракционирования 'Полиэтилена низкого давления в системе ксилол (растворитель)— триэтиленглкколь (осадитгль); были выделены 10—12 фракций. Было установлено, что полиэтилен типа марлакс-50, как и полиэтилен, полученный разложением диазометана, имеет очень широкую кривую распределения и содержит значительное количество низкомолекулярных фракций (рис. 18).[10, С.36]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
5. Сёренсон У.N. Препаративные методы химии полимеров, 1963, 401 с.
6. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
7. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
8. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
9. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
10. Рафиков С.Р. Методы определения молекулярных весов и полидисперности высокомолекулярных соединений, 1963, 337 с.
11. Бовей Ф.N. Действующие ионизирующих излучений на природные и синтетические полимеры, 1959, 296 с.
12. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
13. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
14. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
15. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
16. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
17. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
18. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.
19. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную