На главную

Статья по теме: Полимеров Поскольку

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Параллельная укладка цепей уменьшает величину AS, присущую аморфному каучуку, до значений, характерных для кристаллизующихся полимеров, поскольку конформационная энтропия ориентированных цепей'имеет'меньшее значение. С другой стороны, ориентация "не оказывает никакого влияния на^энтальпию аморфного каучука. Поэтому^величина АЯ в уравнении (3.6-2) остается неизменной и определяется из теории Гвысокоэластичности каучука. Таким образом, уравнение (3.6-2) показывает, что при деформации каучука должно наблюдаться заметное повышение температуры плавления, увеличивающее степень переохлаждения, которая является главным фактором, управляющим скоростью процессов кристаллизации. !?•• ; ,. .. -^[2, С.60]

Из сказанного понятно, что разработка методов определения степени ориентации по данным термической и механической предыстории потребует значительных теоретических и экспериментальных исследований. Создание таких методов является центральной проблемой в разработке способов целенаправленного формирования надмолекулярных структур в процессах переработки аморфных и кристаллических полимеров, поскольку ориентация влияет на механические, оптические и диэлектрические характеристики твердых полимеров. Подробное обсуждение свойств твердых полимеров выходит за пределы настоящей книги. Этот вопрос всесторонне рассмотрен в работах Алфрея [68], Лидермана [69], Трелоара [70], Тобольского [71], Ферри [72], Бики [73], Нильсена [74], Винсента [75], Мак-Крума, Рида и Вильямса [76], Штейна [77], Уорда [78] и Сэмюеля [60].[2, С.77]

Смешение — процесс, уменьшающий композиционную неоднородность, важная стадия в переработке полимеров, поскольку механические, физические и химические свойства, а также внешний вид изделий существенно зависят от композиционной однородности. Можно привести много примеров использования смешения в технологии производства полимеров и, напротив, трудно найти производство, где бы не использовали смешение. Смешивать можно как твердые, так и жидкие компоненты. Примером смешения твердых компонентов может служить введение в полимер концентратов пигментов, волокон или других добавок. Диспергирование технического углерода в полиэтилене — типичный пример смешения твердого вещества с жидкостью, а смешение расплавов полимеров — это смешение жидкости с жидкостью. В производстве полимеров наиболее характерными смесями являются системы: твердое вещество — полимерная жидкость и смеси полимерных жидкостей.[2, С.181]

Под текстурой понимают композиционную неоднородность, проявляющуюся в наличии пятен, полос и прослоек, обнаруживаемых визуально. Отбор случайных проб «вслепую» в различных точках объекта может свидетельствовать о наличии композиционной неоднородности и даже об интенсивности этой неоднородности, но не дает представления о характере текстуры. Случайный отбор проб в отдельных течках не позволяет обнаружить порядок, проявляющийся в текстуре. Текстура имеет большое значение при переработке полимеров, поскольку: а) ламинарное и распределительное смешения неизбежно приводят к образованию текстуры; б) для многих изделий отсутствие или, напротив, наличие требуемой текстуры определяется в результате специального визуального контроля; в) механические свойства композиций зависят от текстуры смеси.[2, С.187]

Переработка литьем под давлением предоставляет большие возможности для управления надмолекулярной структурой полимеров, поскольку, варьируя параметры процесса заполнения формы, можно в широком диапазоне изменять характер течения расплава. Кроме того, при литье под давлением достигается интенсивный перенос тепла по крайней мере дня молекул, расположенных у поверхностей формующей полости. Иными словами, вероятность «замораживания» молекулярной ориентации, вызванной течением, наиболее высока вблизи поверхностных слоев изделия и наиболее низка в середине издечия, следствием чего является образование слоистых структур.[2, С.538]

Положение несколько изменяется, если в аналогичных условиях вести растяжение или экструзию смеси полимеров. Поскольку теперь цепи разной природы не связаны друг с другом в единую макромолекулу, тенденция к разделению макроскопических фаз сказывается сильнее, и вклад градиента скорости у начинает играть большую роль. При сравнительно небольших Y в бинарном расплаве можно получить замороженную струю одного из компонентов, в которой как бы зафиксированы внутренние напряжения, порождающие капиллярные волны; соответственно фиксируется и волнистая форма замороженной струи. Если убрать второй компонент (с помощью подходящего растворителя), ••компенсация этих накопленных внутренних напряжений за счет параметра ХАВ устраняется и происходит еще одна ориентационная катастрофа: капельный распад затвердевшей струи.[3, С.224]

На комплексных катализаторах полимеризация (в отсутствие примесей и при достаточно низкой температуре) может протекать и без обрыва цепи с образованием «живых» полимеров. Поскольку катализаторы Циглера — Натта нерастворимы, то происходит гетерогенный катализ полимеризации. Некоторое время считалось, что гетерогенность является обязательным условием катализа стереоспецифической полимеризации. В настоящее время показано, что стереорегулярные полимеры могут быть получены и при гомогенном катализе, но гетерогенный является более эффективным и более стереоспецифичным. По-видимому, поверхность катализатора способствует определенной ориентации молекулы мономера. Например, стереоспецифическая полимеризация олефинов возможна только при гетерогенном катализе.[4, С.91]

Применение стабильных радикалов в качестве антиоксидантов открывает широкие возможности в области стабилизации полимеров, поскольку стабильные радикалы, по всей вероятности, достаточно универсальны по отношению к различным классам полимеров.[4, С.282]

Наличие АЦ разной структуры в зоне реакции определяет полидисперсность получаемых полимеров, поскольку каждому АЦ соответствует определенная скорость присоединения мономера, а также скорости реакций ограничения цепи. Дополнительной причиной расширения ММР являются диффузионные факторы, проявляющиеся на поздних стадиях полимеризации [21, с. 127—130].[5, С.22]

Основная задача этой книги — помочь читателю ориентироваться в современных проблемах, а также в перспективах физики полимеров. Поскольку даже в числе современных проблем есть вполне решенные или завершенные, а есть и дискуссионные или требующие дальнейшей разработки, не говоря уже о самых новых проблемах, соответствующие разделы написаны по-разному. В случае вполне ясных и устоявшихся ситуаций, авторы приводят все необходимые формулы и затрагивают физико-математические принципы. В случае же менее ясных проблем авторы прибегают по возможности к наглядным диа-грамматическим представлениям и лишь общим формулам.[10, С.6]

Более того, некоторая аналогия геля с полимерным кристаллом (в обоих случаях есть решетки) делает его легко подверженным аналогу механического плавления (но с менее выраженной или не выраженной вовсе анизотропией этого процесса). Под действием внешней силы большая часть узлов разрушается, и система становится текучей. Поскольку же восстановление узлов требует некоторое время т*, то при временах / < т* раствор сохраняет текучесть и лишь постепенно восстанавливает свойства геля. Это явление хорошо известно под названием тиксотропищ особенно подробно в нашей стране ее исследовали Ребиндер и Трапезников [78]. В менее выраженной форме тик-сотропию проявляют и концентрированные и даже полуразбавленные растворы полимеров, поскольку флуктуационные узлы и зацепления также имеют конечное время жизни.[10, С.130]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
3. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
4. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
5. Архипова З.В. Полиэтилен низкого давления, 1980, 240 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
8. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
9. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
10. Бартенев Г.М. Физика полимеров, 1990, 433 с.
11. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
12. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
13. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
14. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
15. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
16. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
17. Северс Э.Т. Реология полимеров, 1966, 199 с.
18. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
19. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
20. Рафиков С.Р. Методы определения молекулярных весов и полидисперности высокомолекулярных соединений, 1963, 337 с.
21. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
22. Виноградов Г.В. Реология полимеров, 1977, 440 с.
23. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
24. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
25. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
26. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
27. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
28. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
29. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
30. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
31. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
32. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.

На главную