На главную

Статья по теме: Полимеров применяемых

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В заключение приводится таблица с указанием основных характеристик некоторых широко распространенных промышленных полимеров, применяемых в качестве пластических масс, эластомеров, волокон (табл. 6.1, с. 86—90).[2, С.85]

Фенольные пенопласта (ФП) занимают особое положение среди вспененных полимеров, применяемых в качестве изоляции в строительстве [18]. Это объясняется уникальным сочетанием ряда свойств этих материалов: высокая огнестойкость, высокая термостойкость, низкое дымовыделение, хорошие звуко- и теплоизоляционные характеристики. Несмотря на это, рынок ФП развивается очень медленно. Это является следствием существования в большинстве стран некомпетентной официальной оценки, несовершенной классификации строительных материалов по горючести, а также относительно высокой стоимости этих материалов.[3, С.173]

Из всех полимеров, применяемых для производства синтетических волокон, полипропилен обладает наименьшей свето- и ат-мосферостойкостью, что связано с более интенсивной окислительной деструкцией его вследствие наличия подвижного атома водорода при третичном атоме углерода. Хорошо известно, что полиэтилен низкого давления на 100 мономерных единиц имеет всего два или три ответвления, тогда как у полипропилена метнльная группа связана с каждым вторым атомом углерода. В результате этого[4, С.253]

До последнего времени в качестве электроизоляционных материалов применялись синтетические органические полимеры. Однако теплостойкость таких материалов часто бывает недостаточна, причем повысить ее очень трудно, так как органические полимеры способны окисляться, и тем сильнее, чем выше температура. Из органических полимеров, применяемых для получения изоляционных материалов, наиболее термостойки глифталевые и феноло-формальдегидные полимеры, но и они при 130 °С легко разрушаются. Если же электрооборудование эксплуатируется в особо тяжелых условиях (угольные, металлургические, тяговые, морские и другие электродвигатели), т. е. когда изоляция подвергается сильным перегревам, хотя бы и кратковременным, а также действию высокой влажности, значительных механических нагрузок и активных химических реагентов, степень надежности изоляции снижается еще быстрее. Органические полимеры могут длительно работать в электротехническом оборудовании при температурах до 130 °С и только некоторые — до 150 °С. При более высоких температурах изоляция на основе[6, С.373]

В литературе наибольшее внимание уделяется изучению адгезии между матрицей и наполнителем и взаимодействия на межфазной границе. Физико-химические процессы, протекающие при формировании структуры материала и ее изменении при эксплуатации изучены в значительно меньшей степени, хотя их влияние на свойства пластиков очень велико. В частности, со структурными изменениями связано влияние на свойства пластиков технологии их изготовления и изменение их характеристик при различных видах старения. Поэтому в данной главе мы сосредоточим внимание именно на структуре армированных ма* териалов и ее влиянии на их свойства, а также приведем основные характеристики эпоксидных полимеров, применяемых для изготовления армированных пластиков.[7, С.208]

Оптические методы. Для характеристики однородности смесей полимеров неоднократно использовались различные оптические методы, в том числе контрастная микрофотография78"80, электронная микроскопия81"85, рентгеноскопия 86~~90, светорассеивание91 и другие методы92-94. Эти методы наглядно показывают степень взаимного перемешивания компонентов и средний размер частиц в каждой фазе. Если размер частиц в фазе соизмерим с длиной применяемой в эксперименте волны, то смесь получается прозрачной. Уменьшение длины волн в стандартном оптическом микроскопе, в ультрамикроскопе, в электронном микроскопе выявляет неоднородность систем вплоть до обнаружения высокоорганизованных образований, присущих индивидуальным исходным полимерам. Опыт показывает, что высокоорганизованные структуры в исходных полимерах, обнаруживаемых при электронной микроскопии, наблюдаются и после смешения. Поэтому оптические методы характеризуют относительную степень диспергирования полимеров и дают дополнительную информацию, подтверждающую их общую термодинамическую несовместимость. С помощью оптических методов можно определить, какой из двух смешиваемых полимеров является дисперсионной средой, а какой дисперсной фазой. Поэтому оптические методы особенно ценны при изучении свойств смесей полимеров, применяемых в промышленности.[8, С.21]

Однако ДОА имеет несколько более высокое давление пара, чем соответствующие эфиры азелаиновой и себациновой кислот. ДОА может быть использован для пластификации полимеров, применяемых в пищевой промышленности, при условии специального разрешения Главного санитарно-эпидемиологического управления.[9, С.346]

Оценить изменение плотности упаковки при наполнении сшитых жесткоцепных полимеров, применяемых, например, для получения стеклопластиков, значительно труднее. Изменения плотности в таких системах могут быть прослежены по спектрам люминесценции примесных молекул антрацена, используемых в качестве зондов.[10, С.23]

Особенности химической природы и структура кожи определяют выбор полимеров, применяемых в качестве клеев, покрытий и связующих составов.[11, С.262]

Состав модельных сред для санитарно-химич. экспериментов подбирается в зависимости от области применения материала. Один из наиболее универсальных приемов исследования материалов, контактирующих с жидкими средами,— использование в качестве модельной жидкости дистиллированной воды пли водных р-ров. Для полимеров, применяемых в водоснабжении, модельной средой служит водопроводная вода; в пищевой пром-сти — жидкости, имитирующие пищевые среды; в медицине — биологич. жидкости. Для оценки полимеров, используемых в герметичных обитаемых объектах (космич. и подводные аппараты, скафандры, салопы кораблей п др.), а также в строительстве жилых п общественных зданий используют газовые среды соответствующих состава и влажности.[12, С.179]

Кровезаменители противошокового действия могут относиться к различным классам полимеров. В числе применяемых или испытываемых: природные полимеры — полисахариды (декстран, крахмал), белки (желатина, пектины); синтетические — поли-М-винилпирро-лидои, поливиниловый спирт, полиметакриламид, а также их производные и сополимеры. Средняя молекулярная масса полимеров, применяемых для лечения кровопотери и шока, может варьировать в пределах 20—70 тыс.[12, С.370]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
2. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
3. Кноп А.N. Фенольные смолы и материалы на их основе, 1983, 280 с.
4. Амброж И.N. Полипропилен, 1967, 317 с.
5. Сагалаев Г.В. Справочник по технологии изделий из пластмасс, 2000, 425 с.
6. Андрианов К.А. Технология элементоорганических мономеров и полимеров, 1973, 400 с.
7. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
8. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
9. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
10. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
11. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
12. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
13. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную