На главную

Статья по теме: Полимеров возможность

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Резина представляет собой многокомпонентную систему, состоящую из эластомера (каучука) и добавок, которые вступают в сложное взаимодействие с каучуком и друг с другом. Основной компонент системы — эластомер (каучук); он представляет собой полимер, отличительной особенностью которого является низкая температура стеклования или кристаллизации, обеспечивающая изделиям из этих полимеров возможность эксплуатации в высокоэластичном состоянии в достаточно широком температурном интервале (—100-f--^ +300 °С). В настоящее время кроме натурального каучука (НК) резиновая промышленность имеет в своем распоряжении широкий ассортимент синтетических каучуков (СК), что позволяет создавать резиновые изделия с весьма разнообразными свойствами. Возможности резиновой промышленности в этом плане расширяются при использовании метода совмещения каучуков друг с другом или с другими полимерами. Применение различных видов добавок (ингредиентов резиновых смесей) позволяет еще больше разнообразить свойства резин. Невулканизованную смесь каучуков с ингредиентами называют резиновой смесью, и она является основным материалом, из которого изготавливается резиновое изделие.[5, С.8]

На основании общих представлений теории строения жидкостей (глава VI) механизм диффузии газа в полимерах состоит в перемещении молекул газа отдельными импульсами через отверстия (дырки), которые образуются и исчезают в полимерах в непосредственном соседстве с молекулами диффундирующего вещества. Эти отверстия в эластических полимерах появляются в результате флюктуации плотности при тепловом движении отрезков цепей. Чем больше гибкость цепи, тем больше вероятность таких флюктуации и обмена местами между молекулами газа и звеньями полимера, тем больше газопроницаемость. У стеклообразных полимеров возможность независимого перемещения звеньев отсутствует. Если жесткие цепи упакованы рыхло, т. е. в полимере имеются постоянно существующие поры, это способствует газопроницаемости. Если цепи упакованы плотно, это препятствует газопроницаемости (поливиниловый спирт).[3, С.491]

На основании общих представлений теории строения жидкостей (глава VI) механизм диффузии газа в полимерах состоит в перемещении молекул газа отдельными импульсами через отверстия (дырки), которые образуются и исчезают в полимерах в непосредственном соседстве с молекулами диффундирующего вещества. Эти отверстия в эластических полимерах появляются в результате флюктуации плотности при тепловом движении отрезков цепей. Чем больше гибкость цепи, тем больше вероятность таких флюктуации и обмена местами между молекулами газа и звеньями полимера, тем больше газопроницаемость. У стеклообразных полимеров возможность независимого перемещения звеньев отсутствует. Если жесткие цепи упакованы рыхло, т. е. в полимере имеются постоянно существующие поры, это способствует газопроницаемости. Если цепи упакованы плотно, это препятствует газопроницаемости (поливиниловый спирт).[7, С.491]

К сожалению, в настоящее время неизвестны более детальные сведения о влиянии характера топологической организации сетчатого полимера (нетолько брутто-количества узлов, но и характера их распределения, количества циклов различного размера и строения и т. п.) на морфологические особенности сетчатых полимеров. Такие работы на сегодняшний день отсутст-вуют, однако подобная информация была бы весьма полезна, так как, с одной стороны, она дала бы возможность найти более тесную связь между топологической и надмолекулярной структурой сетчатого полимера, с другой — на стадии синтеза полимера более целенаправленно управлять ими. Из рассмотренного выше материала очевидно, что подобные исследования представляют интерес в первую очередь для сетчатых полимеров с низкой концентрацией узлов сетки, в которых могут реализоваться различные морфологические структуры. С повышением концентрации узлов сетки полимеров возможность регулирования их морфологии отходит на задний план;, для густосетчатых полимеров эта задача оказывается уже в принципе невыполнимой, так как для последних характерна лишь единственная надмолекулярная организация — глобулярная.[8, С.152]

Возможность упорядочения макромолекул, проявляющегося благодаря межмолекулярному взаимодействию и тепловому движению отрезков цепей (сегментов), определяет наличие у полимеров разных классов надсегментальных и надмолекулярных образований, представляющих собой структуры с различной степенью де,-фектности. Эти надмолекулярные структуры определяют важнейшие механические свойства и кристаллических, и некристаллических полимеров, в частности их деформационные и прочностные свойства.[1, С.34]

Фракционирование методом гель-проникающей хроматографии (ГПХ) основано на применении принципа молекулярного сита, т. е. разделение молекул происходит только по размерам и не зависит от химической природы компонентов. Это свойство отличает метод ГПХ от всех других методов, основанных на растворимости полимеров. Возможность разделения только по размерам особенно важна для сополимеров и полимерных веществ биологического происхождения (белков, нуклеиновых кислот и др.).[2, С.96]

Приведенное рассуждение качественно объясняет уже отмечавшееся важнейшее свойство полимеров — возможность их существования при одних и тех же условиях в течение длительного времени в метастабильных состояниях, кардинально различающихся по структуре, а следовательно, и свойствам. Теперь мы можем ответить и на вопрос, при каких температурах это возможно, а именно: при температурах ниже той, при которой время, требующееся для перестройки структуры, становится больше времени воздействия на полимер.[4, С.30]

Природа высокоэластичности объясняется физическими свойствами цепных молекул. Основное свойство последних, обуславливающее высокоэластнч-ность полимеров, — возможность внутреннего вращения вокруг единичных связей, приводящая к гибкости и легкой сворачиваемое™ полимерных цепей. Гибкость отчетливо проявляется, когда тепловое движение достаточно интенсивно. В стеклообразном состоянии деформация связана с изменениями средних расстояний между атомами и валентных углов полимерной цепи, в высокоэластнческом — с ориентацией н перемещением звеньев гибкой цепи без изменения среднего расстояния между соседними атомами.[4, С.153]

Преимуществом гель-проникающей хроматографии является высокая скорость анализа и его пригодность для всех растворимых полимеров, возможность полной автоматизации метода, относительно низкая стоимость приборов [27].[6, С.31]

приготовлении светочувствительных пластмасс и покрытий, позволяющих получать фотографич. изображение непосредственно на поверхности изделий. Преимущество В. п. по сравнению с многими другими типами реакций полимеров — возможность их проведения на уже готовых изделиях — пленках или волокнах. О синтезе термостойких полимеров см. Полициклокоп-денсация.[9, С.248]

приготовлении светочувствительных пластмасс и покрытий, позволяющих получать фотографич. изображение непосредственно на поверхности изделий. Преимущество В. п. по сравнению с многими другими типами реакций полимеров — возможность их проведения на уже готовых изделиях — пленках или волокнах. О синтезе термостойких полимеров см. Полициклокон-денсация.[10, С.245]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
3. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
4. Бартенев Г.М. Физика полимеров, 1990, 433 с.
5. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
6. Калинина Л.С. Анализ конденсационных полимеров, 1984, 296 с.
7. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
8. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
9. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
10. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную