На главную

Статья по теме: Поведения полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

По аналогии с известным понятием о термореологически простом теле можно высказать суждение о возможности влаж-ностно-реологически простого поведения полимеров при изменении их влажности; это утверждение будет справедливым при выполнении двух условий: 1) эффект влажности сводится только к изменению скорости релаксационного процесса; 2) все члены дискретного спектра времен релаксации изменяются пропорционально одной функции влажности.[2, С.73]

Исследовано поведение отдельных цепей и их совокупностей на микро- и макроуровнях при кратковременном и длительном нагружении полимера. Рассмотрены физико-химические процессы в полимерах в механическом поле. Показана эффективность применения современных инструментальных методов для анализа поведения полимеров под нагрузкой.[1, С.4]

Экстремальное изменение напряжений — нелинейное вязкоупру-гое явление, поэтому оно не предсказывается в рамках теорий линейной вязкоупругости. Заметим, что в процессах переработки полимеров напряжения экстремально возрастают в периоды, соответствующие заполнению формы при литье под давлением и при получении заготовки в периодических процессах формования с раздувом. Полагают поэтому, что эта особенность реологического поведения оказывает влияние на ход этих процессов. Более того, особенности вязкоупругого поведения полимеров, в частности их способность к релаксации напряжений и упругому восстановлению, играют важную роль в процессах переработки полимеров (особенно сильно они влияют на структурообразование и формуемость). Как было показано в гл. 3, остаточные напряжения и деформации, существующие в изделии после формования, в значительной степени определяют его конечные морфологию и свойства.[3, С.139]

В зависимости от поведения полимеров при облучении их мс жно разделить на две группы:[7, С.64]

Для описания механического поведения полимеров и количественной интерпретации «градиентного зондирования» релаксацион-[4, С.181]

Общей причиной аномального поведения полимеров при течении является одновременное развитие всех видов деформации [см. уравнение (1.1)] и их релаксационный характер. В первой области скорость накопления высокоэластической деформации меньше скорости релаксации, вследствие чего величина накопленной высокоэластической деформации незначительная и материал течет с постоянной ньютоновской вязкостью [i0. Увеличение напряжения или скорости деформации приводит к тому, что деформация не успевает релаксировать. Поэтому часть общей деформации носит высокоэластический характер. Увеличение скорости деформации приводит к тому, что между скоростью накопления высокоэластической деформации и скоростью ее релаксации устанавливается динамическое равновесие. Этому режиму деформации полимера соответствует свое значение сопротивления деформации, мерой которого обычно считают величину коэффициента эффективной вязкости. Таким образом, зависимость эффективной вязкости от скорости деформации определяется комплексом релаксационной структуры полимера. Кроме того, нужно иметь в виду изменения структуры полимеров в процессе течения, которые также являются причинами аномалии вязкости. Эти изменения предполагают уменьшение сил взаимодействия между соседними слоями, происходящее, в конечном счете, вследствие очень высоких значений молекулярной~массы полимера. Изменение структуры материала может происходить в следующих направлениях: анизодиаметричность макромолекул и возможность ориентации их в потоке, межмолекулярное взаимодействие и затраты сравнительно небольших усилий для его нарушения, разрушение[10, С.18]

С помощью ИКС НПВО возможно изучение поведения полимеров при повышенных температурах [37], определение коэффициентов диффузии низкомолекулярных веществ из жидкой фазы в массу полимера [38], анализ суспензий или жидкостей, содержащих пузырьки газа [39]. При исследовании этим методом поливинилового спирта в различных состояниях (водный раствор, гидрогель и блок) было показано [40], что в гидрогелях узлы физической сетки имеют кристаллическую природу.[9, С.233]

Отмечавшаяся выше аномалия реологического поведения полимеров связана с изменениями их структуры в процессе переработки, основной причиной которых является высокая молекулярная масса и вытянутая линейная форма макромолекул, т. е. их анизодиаметрич-ность. При этих условиях перемещение макромолекул одновременно как единого целого невозможно, так как количество энергии, необходимое для отрыва макромолекулы в целом от ее соседей, превышает энергию химических связей в главной цепи. Поэтому процесс вязкого течения полимера представляют как серию актов последовательного перемещения кинетических сегментов макромолекул. Достаточное число перемещений сегментов в соседнее положение равновесия в направлении действия силы приводит к перемещению центра тяжести молекулярного клубка, т. е. перемещению самой макромолекулы и необратимому изменению размеров и формы полимерного материала (рис. 1.8). При вытянутой форме макромолекулы трудно представить себе, чтобы она располагалась в одной плоскости и ее сегменты перемещались с одной скоростью вдоль направления действующих сил. Более вероятно, когда один конец ее оказывается в слое, движущемся с одной скоростью, другой — с другой скоростью (см. рис. 1.8). Если это так, то макромолекула будет постепенно вытягиваться (ориентироваться) 1вдоль направления действия сил.[10, С.30]

Классификация физических состояний ф Особенности поведения полимеров в разных физических состояниях[5, С.3]

Классификация физических состояний ф Особенности поведения полимеров в разных физических состояниях[5, С.31]

Попытаемся в общих чертах разобрать возможные случаи деформационного поведения полимеров в условиях термомеханических испытаний. Напомним, что в этих условиях образец находится под действием нагрузки при возрастающей температуре. Чаще всего напряжение действует постоянно на протяжении всего опыта, а температура растет по линейному закону.[8, С.99]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
3. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
4. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
5. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
6. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
7. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
8. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
9. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
10. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
11. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
12. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
13. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
14. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
15. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
16. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
17. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
18. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
19. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
20. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
21. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
22. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
23. Северс Э.Т. Реология полимеров, 1966, 199 с.
24. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
25. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
26. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
27. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
28. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
29. Аскадский А.А. Химическое строение и физические свойства полимеров, 1983, 248 с.
30. Виноградов Г.В. Реология полимеров, 1977, 440 с.
31. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
32. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
33. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
34. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
35. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.
36. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
37. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
38. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
39. Липатов Ю.С. Справочник по химии полимеров, 1971, 536 с.
40. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
41. Жен П.N. Идеи скейлинга в физике полимеров, 1982, 368 с.
42. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
43. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.

На главную