На главную

Статья по теме: Поведения растворов

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Важной характеристикой гидродинамического поведения растворов является их вязкость. В частности, характеристическая вязкость раствора линейного полимера связана с размерами, формой его макромолекул в растворе и степенью полимеризации (см. III.4),[2, С.119]

Важное значение имеет также выявленное в работе различие поведения растворов исследованных полимеров в зависимости от природы полимера и качества растворителя, которое связывается с эффектом интенсивного структурообразования, доходящего до формирования ассоциатов. Результаты реологических измерений представляют собой лишь косвенный метод изучения структурообразования в растворах. Но все же последовательное сопоставление [3] всего комплекса характеристик вязкостных и вязкоупругих свойств растворов различных полимеров в растворителях разного качества действительно показывает, что привлечение структурных представлений позволяет дать объяснение наблюдаемых особенностей поведения растворов в отношении влияния природы растворителя на значения вязкости т)0, модуля высокоэластичности G0, температурных и концентрационных зависимостей Т)0 и G0. Как показано в работах [3], поведение растворов полистирола и полиметилметакрилата в растворителях различной природы, представляющих собой частные случаи в ряду возможных типов растворов полимеров оказывается во многом принципиально различным. Это связано с тем, что интенсивность структурообразования существенно зависит от качества использованного растворителя, причем этот фактор проявляется в различной степени в зависимости от природы макромолекулярной цепи. Следствием этого являются невозможность объяснения различий вязкости растворов полиметилметакрилата в разных растворителях с позиций представлений теории свободного объема, несовпадение значений модуля высокоэластичности эквиконцентрированных растворов (из-за разницы в плотности флук-туационной сетки зацеплений, обусловленной зависимостью интенсивности структурообразования от природы растворителя) и появление сильной температурной зависимости модуля высокоэластичности (из-за влияния температуры на распад ассоциатов).[4, С.246]

Для объяснения поведения растворов полипептидов при течении было предложено несколько механизмов. Германе [14] связывает более низкую вязкость анизотропной фазы при малых скоростях сдвига с ориентацией палочкообразных молекул в направлении потока. В анизотропной фазе существует корреляция в ори-[6, С.259]

Равновесное состояние системы обычно описывают с помощью термодинамических функций состояния, характеризующих общие соотношения между физико-химическими величинами. Для описания поведения растворов при постоянных давлении Р и температуре Т используют изобарно-изотермический потенциал G (иногда называют также свободной энергией), который связан с энтальпией Н и энтропией S соотношением[9, С.57]

За последнее время в литературе появились работы, касающиеся проблемы взаимодействия высокомолекулярных органических веществ с низкомолекулярными [1—5]. В них экспериментально доказано, что причиной отклонения поведения растворов высокополимеров от закона Рауля является не сильные энергетические взаимодействия между молекулами смешивающихся компонентов, а очень резкое отклонение энтропии смешения от ее идеального значения.[8, С.253]

Ключевым термодинамическим параметром, определяющим свойства полимерных растворов, является параметр /, характеризующий изменение энергии Гиббса растворителя при введении в него некоторого участка макромолекулы — обычно мономерной единицы или сегмента. Особенности термодинамического поведения растворов полимеров обусловлены тем, что макромолекулу можно расположить в растворителе большим числом способов, так как она может принять огромное число различных конформаций. По мере повышения концентрации уже вошедшие в раствор цепи создают осложнения для введения новых цепей (возникают пресловутые ловушки, когда определенный объем заэкранирован звеньями или сегментами уже помещенных в нее молекул).[3, С.112]

Надо отметить, что когда контакты полимер — полимер и растворитель — растворитель предпочтительнее (k1 ^> 0) контактов полимер — растворитель, второй вириальный коэффициент Az уменьшается по сравнению с А% в атермических растворителях. Полученные соотношения для А\иг, несмотря на большое число приближений, позволяют объяснить основные закономерности термодинамического поведения растворов гибкоцепных полимеров. Действительно, если k± ^ 0 в уравнении для A^i, то зависимость A^i = / (фа) описывается сложной кривой с максимумом и минимумом, что свидетельствует о расслоении раствора на две фазы. Условия расслоения определяются из уравнения[9, С.61]

Ясно, что процессы образования и роста частиц полимера при дисперсионной полимеризации сильно зависят от растворимости полимера. Несмотря на то, что полуэмпирическое описание в терминах полярного или неполярного характера полимера и растворителя может служить приблизительным качественным руководством, пригодным для экспериментальных целей, представляется желательным характеризовать свойства растворимости полимеров более точно и количественно. Наиболее удобным для этой цели оказался параметр растворимости, связывающий растворимость с химической структурой полимера и растворителя 18]. Последняя, в свою очередь, может быть связана с параметрами взаимодействия, входящими в развитую Флори и Хаггинсом теорию растворов полимеров, которая объясняет зависимость растворимости от молекулярной массы и многие другие аспекты поведения растворов полимера.[5, С.136]

При растворении полимеров в низкомолекулярных жидкостях энтальпия смешения ДЯ в большинстве случаев мала; в случае эластомеров она, как правило, положительна. Хорошая растворимость полимеров в большом числе растворителей обусловлена необычайно высокими значениями энтропии смешения. Именно с последним обстоятельством связаны и отклонения свойств растворов полимеров от свойств идеальных растворов. Теория растворов полимеров [2—5] позволила рассчитать энтропию смешения полимера с растворителем исходя из определения числа способов, которыми могут разместиться молекулы растворителя среди связанных в длинные гибкие цепи сегментов макромолекул (конфигурационную энтропию смешения). Несмотря на ряд существенных приближений используемой модели, полученные с ее помощью уравнения свободной энергии смешения и, соответственно, парциальных мольных свободных энергий компонентов системы (химических потенциалов полимера и растворителя) позволили объяснить важнейшие особенности поведения растворов полимеров.[1, С.33]

Ниже приведены основные положения, касающиеся поведения растворов линейных полимеров и трехмерных макромолеку-лярных гелей в цикле замораживание — размораживание.[10, С.201]

Серфом [1847] на основе модели цепной молекулы, состоящей из N гауссовых суб-молекул, развита общая теория гидродинамического поведения растворов макромолекул, применяемая для изучения динамооптических свойств бесконечно разбавленного монодисперсного раствора, находящегося в потоке с постоянным градиентом скорости [1848—1850].[11, С.293]

створе. Для непротиворечивого термодинамического обсуждения поведения этих систем также требуется изменение понятий «фаза», «гомогенность»-и т. п. в духе изложенных нами представлений о кристаллических полимерах. Поэтому мы полагаем, что эти соображения имеют весьма общий характер и что они должны быть в дальнейшем подробно разработаны. Сравнение поведения растворов мыл с поведением кристаллических полимеров представляется нам весьма плодотворным для развития теории обеих этих сложных и интересных систем.[7, С.92]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
3. Бартенев Г.М. Физика полимеров, 1990, 433 с.
4. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
5. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
6. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
7. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
8. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
9. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
10. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
11. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.

На главную