На главную

Статья по теме: Поворотно изомерная

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Поворотно-изомерная теория гибкости макромолекул предполагает, что в реальных молекулярных цепях на конусе вращения имеются один-два или больше минимумов с различными потенциальными энергиями. Анализ с этих позиций формулы (IV. 13) показывает, что формула Тейлора относится к полимерам с симметричными привесками (полиэтилен, полиизобутилен), в которых потенциал внутреннего вращения симметричен относительно трансположения (рис. IV. 10 и IV.8), т. е. [/(ф) = U(— <р).[1, С.134]

Это уравнение не учитывает ближних взаимодействий по цепи, которые играют существенную роль. Именно количественная поворотно-изомерная теория Волькенштейна [7, с. 169; 9, с. 257] учитывает взаимосвязь между вращением вокруг соседних связей н[1, С.134]

Как оказалось [4.1; 11], это уравнение пренебрегает ближними взаимодействиями по цепи, которые играют существенную роль. Поворотно-изомерная теория Волькенштейна [4.1; 11] учитывает взаимосвязь между вращением вокруг соседних связей и рассматривает макромолекулу как одномерную кооперативную систему.[2, С.95]

Не отфицая в принципе наличия крутильных колебаний около каждого потенциального минимума, поворотно-изомерная теория исходит из того, что основным механизмом изменения конформации является поворотная изомеризация, т. е. изменение содержания и распределения поворотных изомеров в цепи. Несомненно, что оба названных механизма гибкости имеют место во всех случаях, 'причем преобладание того или иного из них связано с химическим строением цепей, температурой и рядом других факторов (например, находится ли данная молекула в растворе или блоке).[5, С.11]

Поворотно-изомерная теория макромолекул 28[6, С.3]

ПОВОРОТНО-ИЗОМЕРНАЯ ТЕОРИЯ МАКРОМОЛЕКУЛ[6, С.28]

Поворотно-изомерная теория [1, 4, 5], предложенная Волькенштейном, рассматривает полимерную цепь как равновесную смесь поворотных изомеров. Внутреннее вращение рассматривается как поворотная изомеризация, т. е. как перескок отдельных звеньев из одной конфор-мации в другую. На самом деле кроме таких перескоков возможны тепловые флуктуации, которые проявляются в виде крутильных колебаний с углами поворота ф, отвечающими минимумам на кривой ?/(ф), т. е. около положений, соответствующих поворотным изомерам. Однако эти флуктуации не влияют на усредненные свойства полимерных цепей, так как в силу своего случайного характера взаимно компенсируют друг друга. Выше уже говорилось о том, что кривая ?/(ф), характеризующая потенциальную энергию внутреннего вращения в полимере, как правило, имеет несколько неэквивалентных минимумов. Следовательно, при поворотах звенья макромолекулы могут принимать не любые положения на поверхности конуса вращения, а лишь те, которые соответствуют минимумам потенциальной энергии и определяются химическим строением полимера. Это позволяет приближенно заменить кривую U (ф) совокупностью энергий поворотных изомеров, получающихся[6, С.28]

Вопрос о применимости поворотно-изомерной теории для описания полимеров был подробно рассмотрен М. В. Волькенштейном в его монографии «Конфигурационная статистика полимерных цепей» ([1] и ряде других работ [2 — 5]. Он показал, что поворотно-изомерная теория хорошо обоснована для тех случаев, когда минимумы потенциальной энергии разделены энергетическими барьерами, существенно превышающими kT. Если это условие не соблюдается, поворотно-изомерная теория сохраняет значение приближенного математического метода, позволяющего заменить интегрирование суммированием. В этом смысле поворотно-изомерная теория может рассматриваться как модельная математическая теория.[6, С.31]

Существование поворотных изомеров в полимерах экспериментально установлено методами инфракрасной спектроскопии. Оказалось, что для важнейших полимеров величина потенциального барьера существенно превышает kT. Поворотно-изомерная теория была эксперименталь-[6, С.31]

Поворотно-изомерная теория макромолекул 28 ел.[6, С.310]

В отличие от матричных методов, восходящих к классической работе Изинга [19], опубликованной в 1925 г., формулируемый нами метод позволяет рассматривать произвольные потенциалы взаимодействия между мономерными единицами полимерных цепей. Впервые он был применен Гюрсеем в работе [3], опубликованной в 1950 г., для исследования абстрактной одномерной системы. Поворотно-изомерная модель полимеров, постулирующая узкий класс потенциалов взаимодействия, может рассматриваться как частный случай нашей модели. Вместе с тем излагаемый метод в сравнении с матричным обладает не меньшей математической простотой. Он также проще известного подхода М. Каца, использующего аппарат теории стохастических процессов [33].[8, С.7]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
4. Бартенев Г.М. Физика полимеров, 1990, 433 с.
5. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
6. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
7. Аскадский А.А. Химическое строение и физические свойства полимеров, 1983, 248 с.
8. Алмазов А.Б. Вероятностные методы в теории полимеров, 1971, 152 с.
9. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
10. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
11. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.

На главную