На главную

Статья по теме: Предельной ориентации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В случае предельной ориентации полимера все его цепи натянуты, поэтому они одновременно и в одинаковой мере воспринимают нагрузку, и образец имеет наибольшую прочность. С уменьшением степени ориентации число предельно вытянутых молекул уменьшается и они становятся все более перегруженными по сра'в-нению с невытянутыми. Разрыв молекул в наиболее опасном месте образца в этом случае происходит не одновременно, а поочередно, вследствие чего прочность образцов непрерывно уменьшается. Для неориентированных образцов эта очередность разрывов молекул является причиной весьма низкого значения сг0.[2, С.196]

При рассмотрении влияния ориентации и кристаллизации на механические свойства полимеров следует подчеркнуть, что предельной ориентации в принципе можно достичь как для кристаллизующихся, так и для некристаллизующихся аморфных полимеров. В последнем случае цепные молекулы будут сдвинуты относительно друг друга вдоль оси ориентации, в то время как элементы структуры могут быть по-разному повернуты относительно этой оси.[6, С.178]

Таким образом, зависимость логарифма вязкости от напряже-ния сдвига для разбавленных растворов полимеров выражается полной кривой течения (рис 177), начальный участок которой отвечает наибольшей ньютоновской вязкости, конечный — наименьшей ньютоновской вязкости при предельной ориентации макромолекул. Средний участок кривой соответствует структурной вязкости (глава IX). При определении характеристической вязкости необходимо проводить измерения в ньютоновских режимах течения, Это достигается проведением опытов при очень малых напряжениях и скоростях сдвига или экстраполяцией полученных зависимостей ^gr\—f(y) или Igr] —/(GT) к нулевой скоросги или к рулевому напряжению сдвига[3, С.412]

Структура таких жидкостей, так называемых «ньютоновских», с изменением напряжения сдвига остается постоянной, и коэффициент вязкости таких жидкостей при данной температуре тоже величина постоянная. В растворах полимеров, даже в разбавленных, вязкость зависит от величины приложенного напряжения и соответственно от градиента скорости. Такие жидкости называются неньютожжскими. Их коэффициент вязкости — величина переменная, а градиент скорости зависит от приложенного напряжения. Вязкость таких растворов была названа Оствальдом «структурной» вязкостью. Влияние величины градиента скорости на вязкость объясняется у таких жидкостей ориентацией молекул в направлении потока, причем с ростом градиента скорости эта ориентация увеличивается, а вязкость уменьшается. Это уменьшение вязкости происходит до определенного значения, соответствующего предельной ориентации цепей.[8, С.159]

Структура таких жидкостей, так называемых «ньютоновских», с изменением напряжения сдвига остается постоянной, и коэффициент вязкости таких жидкостей при данной температуре тоже величина постоянная. В растворах полимеров, даже в разбавленных, вязкость зависит от величины приложенного напряжения и соответственно от градиента скорости. Такие жидкости называются неньютоновскими. Их коэффициент вязкости — величина переменная, а градиент скорости зависит от приложенного напряжения. Вязкость таких растворов была названа Оствальдом «структурной» вязкостью. Влияние величины градиента скорости «а вязкость объясняется у таких жидкостей ориентацией молекул в направлении потока, причем с ростом градиента скорости эта ориентация увеличивается, а вязкость уменьшается. Это уменьшение вязкости происходит до определенного значения, соответствующего предельной ориентации цепей.[9, С.159]

Фазовое состояние полимера слабо влияет на УД, так как аморфная фаза в некристаллическом и кристаллическом состояниях полимера характеризуется близкими значениями плотности. Сильное влияние на у оказывает микронеоднородная (в частности, надмолекулярная и надсегментальная) структура через образование субмикро- и микротрещин, которое происходит как при получении полимеров, так и при воздействии на них внешних факторов или обработке (тепловой, механической) изделий. В полимерных волокнах прочность аморфных областей микрофибрилл, где цепи также находятся в ориентированном состоянии, примерно в три раза ниже прочности полимерного монокристалла (10—20 ГПа при 297 К) за счет перенапряжения цепей, равного хо = 3 по Зайцеву [3.6] (см. выше). Прочность бездефектного неориентированного аморфного полимера меньше, чем прочность полимерного кристалла в направлении ориентации его цепей, за счет увеличения флуктуационного объема в три раза. Снижение прочности вызывают микротрещины из-за концентрации напряжений. Для ориентированных кристаллических полимеров в итоге общий коэсрфициент перенапряжения равен х = ио|3, а для аморфных неориентированных полимеров я = р\ О промежуточных вариантах можно сказать следующее. Для неориентированного кристаллического полимера, в котором аморфная фаза не ориентирована, х = р. Для ориентированного аморфного полимера в случае предельной ориентации и = хо|3, а следовательно, его прочность должна быть в 3 раза больше, чем неориентированного кристаллического полимера, т. е. достигать прочности монокристалла в направлении полимерных цепей. Однако достигнуть предельно ориентированного состояния или близкого к нему практически невозможно. Следовательно, можно считать, что у является скорее характеристикой образца, детали, изделия, нежели полимера как материала.[7, С.115]

градиента скорости, Чем больше градиент скорости, тем меньше роль теплового движения, тем больше влияние ориентации и тем меньше вязкость, При постоянной температуре интенсивность теплового движения тем больше, чем разбавленнее раствор, Поэтому эффект цоиижения вязкости с увеличением напряжения сдвига нагляднее вьфажен в более концентрированных растворах, в которых степень ориентации больше (табл. 28), Коэффициент вязкости с ростом градиента скорости уменьшается до определенного значения, соответствующего предельной ориентации цепей,[3, С.411]

мально к направлению предельной ориентации молекул (см. рис. 3.13).[1, С.151]

напранлен по касательной к оси потока, второй — радиально. Направление движения частиц может совпадать с вектором скорости при предельной ориентации. Ориентация всегда нарушается тепловым движением, вследствие чего направление оптической оси исследуемого слоя раствора составляет с направлением потока некоторый угол а, называемый углом угасания или углом ориентации.[3, С.482]

направлен по касательной к оси потока, второй — радиально. Направление движения частиц может совпадать с вектором скорости при предельной ориентации. Ориентация всегда нарушается тепловым движением, вследствие чего направление оптической оси исследуемого слоя раствора составляет с направлением потока некоторый угол а, называемый углом угасания яли углом ориентации.[5, С.482]

меньше вязкость, При постоянной температуре интенсивность теплового движения тем больше, чем разбавленнее раствор, Поэтому эффект цоиижения вязкости с увеличением напряжения сдвига нагляднее выражен в более концентрированных растворах, в которых степень ориентации больше (табл. 28). Коэффициент вязкости с ростом градиента скорости уменьшается до определенного значения, соответствующего предельной ориентации цепей,[5, С.411]

что после предельной ориентации газопроницаемость[4, С.149]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
4. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
5. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
6. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
7. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
8. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
9. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.

На главную